9.6 Vector-Valued Functions

In this section, we will begin exploring functions whose codomain have dimension larger than 1.

Main Concepts

A vector-valued function is a function whose input is a single real number t, and whose output is a a vector that depends on t. The graph of a vector-valued function is the set of all terminal points of the output vectors with their initial point at the origin. A parametric curve (or parametric equation) is a vector-valued function of the form

 $\mathbf{r}(t) = x(t)\mathbf{\hat{x}} + y(t)\mathbf{\hat{y}}$ or $\mathbf{r}(t) = x(t)\mathbf{\hat{x}} + y(t)\mathbf{\hat{y}} + z(t)\mathbf{\hat{z}}$

where the **component functions** x(t), y(t), and z(t) are real-valued functions.

A parametric line is a vector-valued function $\mathbf{r}(t)$ of the form $\mathbf{r}(t) = \mathbf{b} + t\mathbf{v}$, where \mathbf{b} and \mathbf{v} are fixed vectors. We also say that this is a line starting at \mathbf{b} , in the direction of \mathbf{v} .

Question 1. In this problem, we will generalize the process of finding the equation of a 2-dimensional line to the process of finding the (parametric) equation of a line in higher dimensions.

(a) Let (x_0, y_0) and (x_1, y_1) be two points in \mathbb{R}^2 , and assume that $x_0 \neq x_1$. Find a linear function that passes through these points. (**Hint:** point-point form)

(b) Now, (x_0, y_0) and (x_1, y_1) be two points in \mathbb{R}^2 , but don't assume that $x_0 \neq x_1$. We want to find a parametric function $\mathbf{r}(t) = x(t)\mathbf{\hat{x}} + y(t)\mathbf{\hat{y}}$ such that $\mathbf{r}(0) = (x_0, y_0)$ and $\mathbf{r}(1) = (x_1, y_1)$.

Suppose x(t) = a + bt and y(t) = c + dt. Then, we want $x(0) = x_0$ and $x(1) = x_1$ and similarly for y. Find values of a, b, c, d that satisfy the equations above.

(c) Using your function from the last part, solve y = y(t) and x = x(t) for t.

(d) Equate the two expressions you found in the last part to get a single equation involving only x and y. What do you notice about this equation?

(e) Do part (b) for the case where (x_0, y_0, z_0) and (x_1, y_1, z_1) are two points in \mathbb{R}^3 .

Question 2. Find a parameterization of a circle of radius 11, contained in the plane z = 0 centered at the point (1, -1, 0), and oriented clockwise.

Question 3. Find a vector-valued function $\mathbf{r}(t)$ that parameterizes the line through the point (-2, 1, 4) in the direction of the vector $\mathbf{b} = \langle 3, 2, -5 \rangle$.

Question 4. Find a vector-valued function $\mathbf{r}(t)$ that parameterizes the line of intersection of the planes x + 2y - z = 4 and 3x + y - 2z = 1.

Question 5.

(a) Determine the point of intersection of the lines given by $\mathbf{r}(t) = \langle 2, 1, 0 \rangle + \langle 1, -2, 4 \rangle t$ and $\mathbf{s}(t) = \langle 3, 3, 0 \rangle + \langle 1, -2, 2 \rangle t$.

(b) Then, find a vector valued function $\mathbf{q}(t)$ that parameterizes the line that passes through the point of intersection and is perpendicular to the lines traced out by $\mathbf{r}(t)$ and $\mathbf{s}(t)$.