9.6 Vector-Valued Functions

In this section, we will begin exploring functions whose codomain have dimension larger than 1.

Main Concepts

A vector-valued function is a function whose input is a single real number t, and whose output is a a vector that depends on t. The graph of a vector-valued function is the set of all terminal points of the output vectors with their initial point at the origin. A parametric curve (or parametric equation) is a vector-valued function of the form

$$
\mathbf{r}(t)=x(t) \hat{\mathbf{x}}+y(t) \hat{\mathbf{y}} \quad \text { or } \quad \mathbf{r}(t)=x(t) \hat{\mathbf{x}}+y(t) \hat{\mathbf{y}}+z(t) \hat{\mathbf{z}}
$$

where the component functions $x(t), y(t)$, and $z(t)$ are real-valued functions.
A parametric line is a vector-valued function $\mathbf{r}(t)$ of the form $\mathbf{r}(t)=\mathbf{b}+t \mathbf{v}$, where \mathbf{b} and \mathbf{v} are fixed vectors. We also say that this is a line starting at \mathbf{b}, in the direction of \mathbf{v}.

Question 1. In this problem, we will generalize the process of finding the equation of a 2 -dimensional line to the process of finding the (parametric) equation of a line in higher dimensions.
(a) Let $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ be two points in \mathbb{R}^{2}, and assume that $x_{0} \neq x_{1}$. Find a linear function that passes through these points. (Hint: point-point form)
(b) Now, $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ be two points in \mathbb{R}^{2}, but don't assume that $x_{0} \neq x_{1}$. We want to find a parametric function $\mathbf{r}(t)=x(t) \hat{\mathbf{x}}+y(t) \hat{\mathbf{y}}$ such that $\mathbf{r}(0)=\left(x_{0}, y_{0}\right)$ and $\mathbf{r}(1)=\left(x_{1}, y_{1}\right)$.

Suppose $x(t)=a+b t$ and $y(t)=c+d t$. Then, we want $x(0)=x_{0}$ and $x(1)=x_{1}$ and similarly for y. Find values of a, b, c, d that satisfy the equations above.
(c) Using your function from the last part, solve $y=y(t)$ and $x=x(t)$ for t.
(d) Equate the two expressions you found in the last part to get a single equation involving only x and y. What do you notice about this equation?
(e) Do part (b) for the case where $\left(x_{0}, y_{0}, z_{0}\right)$ and $\left(x_{1}, y_{1}, z_{1}\right)$ are two points in \mathbb{R}^{3}.

Question 2. Find a parameterization of a circle of radius 11, contained in the plane $z=0$ centered at the point ($1,-1,0$), and oriented clockwise.

Question 3. Find a vector-valued function $\mathbf{r}(t)$ that parameterizes the line through the point $(-2,1,4)$ in the direction of the vector $\mathbf{b}=\langle 3,2,-5\rangle$.

Question 4. Find a vector-valued function $\mathbf{r}(t)$ that parameterizes the line of intersection of the planes $x+2 y-z=4$ and $3 x+y-2 z=1$.

Question 5.

(a) Determine the point of intersection of the lines given by $\mathbf{r}(t)=\langle 2,1,0\rangle+\langle 1,-2,4\rangle t$ and $\mathbf{s}(t)=\langle 3,3,0\rangle+$ $\langle 1,-2,2\rangle$ t.
(b) Then, find a vector valued function $\mathbf{q}(t)$ that parameterizesthe line that passes through the point of intersection and is perpendicular to the lines traced out by $\mathbf{r}(t)$ and $\mathbf{s}(t)$.

