9.3 The Dot Product and Projections

In this section, we look at the definition and uses of the dot product

Definition and Properties

Algebraically, the dot product of two vectors, $\mathbf{v}=a \hat{\mathbf{i}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}}$ and $\mathbf{w}=d \hat{\mathbf{i}}+e \hat{\mathbf{j}}+f \hat{\mathbf{k}}$, is

$$
\mathbf{v} \cdot \mathbf{w}:=a d+b e+c f .
$$

Geometrically, the dot product of \mathbf{v} and \mathbf{w} is the product of their lengths and the cosine of the angle between them:

$$
\mathbf{v} \cdot \mathbf{w}:=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta
$$

where θ is the angle between the two vectors.
The most important property of the dot product is:

$$
\mathbf{v} \cdot \mathbf{w}=0 \text { if and only if } \mathbf{v} \text { is perpendicular to } \mathbf{w} .
$$

Question 1. Compute the dot product of $3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$. What is the angle between these vectors?

Question 2. What $\mathbf{v} \cdot \mathbf{v}$? (What is the angle of between a vector and itself?)

Question 3. Is the vector from $(4,1,2)$ to $(2,4,3)$ perpendicular to the vector $3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$?

Question 4. The vectors $3 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\hat{\mathbf{i}}-y \hat{\mathbf{j}}$ are perpendicular. Use the dot product to find y.

Question 5. Given vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} so that $\mathbf{u} \cdot \mathbf{v}=2, \mathbf{u} \cdot \mathbf{w}=-3,\|\mathbf{u}\|=5,\|\mathbf{v}\|=1 / 4$, and $\|\mathbf{w}\|=1$, compute the following:
(a) $2 \mathbf{u} \cdot(\mathbf{v}+\mathbf{w})$
(b) The angle between \mathbf{v} and \mathbf{w}.
(c) If $(2 \mathbf{u}+\mathbf{v}) \cdot(2 \mathbf{w})=-6$, find $\mathbf{v} \cdot \mathbf{w}$.

Projection of one vector onto another

Given a vector \mathbf{v}, we want to know 'how much' of another vector \mathbf{u} points in the direction of \mathbf{v}. This is called the projection of \mathbf{u} onto \mathbf{v} and it is a multiple of \mathbf{u}, as you can see in the following diagram:

Algebraically,

$$
\operatorname{proj}_{\mathbf{v}}(\mathbf{u})=\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{v}\|^{2}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{v}\|} \hat{\mathbf{v}}
$$

Question 6. $\operatorname{Compute}^{\operatorname{proj}_{\mathbf{v}}}(\mathbf{u})$ for the following choices of \mathbf{u} and \mathbf{v} :
(a) $\mathbf{u}=3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-\hat{\mathbf{k}}, \mathbf{v}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$.
(b) $\mathbf{u}=3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-\hat{\mathbf{k}}, \mathbf{v}=-2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}} d-4 \hat{\mathbf{k}}$.
(c) $\mathbf{u}=3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-\hat{\mathbf{k}}, \mathbf{v}=\hat{\mathbf{i}}$.
(d) $\mathbf{u}=3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-\hat{\mathbf{k}}, \mathbf{v}=5 \hat{\mathbf{i}}$.

