9.2 Vectors

In this section, we will introduce the notion of a vector, and study their algebraic and geometric structures.

Vectors

A *n*-dimensional vector is a list $\mathbf{x} = (x_1, x_2, \dots, x_n)$ of *n* real numbers. We interpret a vector as an arrow pointing from the origin $\mathbf{0} = (0, 0, \dots, 0)$ to the point $p_{\mathbf{x}} = (x_1, x_2, \dots, x_n)$.

The collection of all *n*-dimensional vectors is called a *n*-dimensional real vector space, or just *n*-dimensional space for short, often written \mathbb{R}^n .

Given two vectors $\mathbf{v} = (v_1, \ldots, v_n)$ and $\mathbf{w} = (w_1, \ldots, w_n)$ in \mathbb{R}^n , we can add them them together:

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, \dots, v_n + w_n).$$

Geometrically, this corresponds to put the second vector's "tail" at the "tip" of the first vector. Further, we can scale a vector by a **scalar**, λ (a real number):

$$\lambda \mathbf{v} = (\lambda v_1, \dots, \lambda v_n).$$

Geometrically, scaling corresponds to stretching or compressing the line segment $\overline{\mathcal{OP}_{\mathbf{v}}}$ by a factor of λ , with reflection if $\lambda < 0$.

The **length** or **norm** of a vector $\mathbf{v} = (v_1, \ldots, v_n)$ is the quantity $\|\mathbf{v}\| = \sqrt{v_1^2 + \cdots + v_n^2}$, which is also often written as $|\mathbf{v}|$. We say a vector is a unit vector if $\|\mathbf{v}\| = 1$. The norm satisfies two important properties: the triangle inequality

$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|,$$

and the scalar law:

$$\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|.$$

To get the **unit vector** pointing in the same direction as the non-zero vector \mathbf{v} , we can divide \mathbf{v} by $\|\mathbf{v}\|$, i.e. $\hat{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$.

Question 1. In three dimensions, we often write vectors as a sum of the basis vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$, where $\hat{\mathbf{i}}$ is the vector (1,0,0), $\hat{\mathbf{j}}$ is the vector (0,1,0), and $\hat{\mathbf{k}}$ is the vector (0,0,1). For each of the following either convert the vector from list form to $\hat{\mathbf{ijk}}$ form or vice versa. Then, compute the norm of the vector.

(a) (0, -1, 2)

- (b) $3\hat{i} 2\hat{j}$
- (c) $\mathbf{\hat{i}} \mathbf{\hat{k}}$
- (d) (3, 2, -5)

Question 2. Find all of the 2-dimensional vectors having norm 13 with *y*-component 5. (Hint: Use the definition of the norm in \mathbb{R}^2 .)

Question 3. Find all of the 2-dimensional vectors having norm k (here k > 0) that lie on the line x + y = 0.