9.2 Vectors

In this section, we will introduce the notion of a vector, and study their algebraic and geometric structures.

Vectors

A n-dimensional vector is a list $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of n real numbers. We interpret a vector as an arrow pointing from the origin $\mathbf{0}=(0,0, \ldots, 0)$ to the point $p_{\mathbf{x}}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

The collection of all n-dimensional vectors is called a n-dimensional real vector space, or just n-dimensional space for short, often written \mathbb{R}^{n}.

Given two vectors $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ and $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ in \mathbb{R}^{n}, we can add them them together:

$$
\mathbf{v}+\mathbf{w}=\left(v_{1}+w_{1}, \ldots, v_{n}+w_{n}\right)
$$

Geometrically, this corresponds to put the second vector's "tail" at the "tip" of the first vector.
Further, we can scale a vector by a scalar, λ (a real number):

$$
\lambda \mathbf{v}=\left(\lambda v_{1}, \ldots, \lambda v_{n}\right) .
$$

Geometrically, scaling cooresponds to stretching or compressing the line segment $\overline{\mathcal{O} P_{\mathbf{v}}}$ by a factor of λ, with reflection if $\lambda<0$.

The length or norm of a vector $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ is the quantity $\|\mathbf{v}\|=\sqrt{v_{1}^{2}+\cdots+v_{n}^{2}}$, which is also often written as $|\mathbf{v}|$. We say a vector is a unit vector if $\|\mathbf{v}\|=1$. The norm satisfies two important properties: the triangle inequality

$$
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|,
$$

and the scalar law:

$$
\|\lambda \mathbf{x}\|=|\lambda|\|\mathbf{x}\| .
$$

To get the unit vector pointing in the same direction as the non-zero vector \mathbf{v}, we can divide \mathbf{v} by $\|\mathbf{v}\|$, i.e. $\hat{\mathbf{v}}=\frac{\mathbf{v}}{\|\mathbf{v}\|}$.

Question 1. In three dimensions, we often write vectors as a sum of the basis vectors $\hat{\mathbf{i}}, \hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$, where $\hat{\mathbf{i}}$ is the vector $(1,0,0), \hat{\mathbf{j}}$ is the vector $(0,1,0)$, and $\hat{\mathbf{k}}$ is the vector $(0,0,1)$. For each of the following either convert the vector from list form to $\hat{i} \hat{j} \hat{k}$ form or vice versa. Then, compute the norm of the vector.
(a) $(0,-1,2)$
(b) $3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}$
(c) $\hat{\mathbf{i}}-\hat{\mathbf{k}}$
(d) $(3,2,-5)$

Question 2. Find all of the 2-dimensional vectors having norm 13 with y-component 5. (Hint: Use the definition of the norm in \mathbb{R}^{2}.)

Question 3. Find all of the 2-dimensional vectors having norm k (here $k>0$) that lie on the line $x+y=0$.

