9.1 Functions of Several Variables and Three Dimensional Space

9.1.1 Functions of Several Variables and Three Dimensional Space - Part I

In this section, we will introduce functions of two variables

Definitions

A function f of two independent variables is a rule which assigns to each ordered pair (x, y) in a set D exactly one real number output, $f(x, y)$.

The domain of a function f is the set of all inputs at which the function is defined.

Example

The function $f(x, y)=x+y$ is a function of two variables. For the input $(1,2)$, the function f assigns the output $1+2=3$, or $f(1,2)=2$. As the function is defined for any ordered pair (x, y), we say that the domain of $f(x, y)$ is the entire $x y$-plane, or \mathbb{R}^{2}.

Question 1. For each of the following functions of two variables determine if the function is defined at $(1,2)$. If it is, evaluate $f(1,2)$. If it is not, explain why.
(a) $f(x, y)=x^{2}+y^{2}$
(b) $g(x, y)=\frac{x}{y}$
(c) $h(x, y)=\sqrt{x^{2}+y^{2}}$
(d) $j(x, y)=\frac{x+1}{y-2}$
(e) $k(x, y)=0$
(f) $l(x, y)=2 x$

Question 2. For each function in Question 1, state the domain.

9.1.2 Functions of Several Variables and Three Dimensional Space - Part II

In this section, we will introduce graphs of two variable functions

Definition

The graph of a function $z=f(x, y)$ is the set of points of the form $(x, y, f(x, y))$, where the ordered pair (x, y) is in the domain of f.

Important Examples

$$
\begin{aligned}
& z=x^{2}+y^{2} \\
& z=\sqrt{x^{2}+y^{2}} \\
& z=x^{2}-y^{2}
\end{aligned}
$$

Some Transformations of Graphs

Let G be the graph of the function $z=f(x, y)$.

1. The the graph of the function $z=-f(x, y)$ is G inverted over the $x y$-plane.
2. The graph of the function $z=f(x-a, y)$ is G shifted a units in the x-direction.
3. The graph of the function $z=f(x, y-b)$ if G shifted b units in the y-direction.
4. The graph of the function $z=k \cdot f(x, y)$, where $k>0$, is f scaled vertically by the factor k.

Question 1. Using the above important examples and listed transformations, sketch graphs of the following functions:
(a) $f(x, y)=x^{2}+y^{2}$
(b) $g(x, y)=\frac{x}{y}$
(c) $h(x, y)=\sqrt{x^{2}+y^{2}}$
(d) $j(x, y)=\frac{x+1}{y-2}$
(e) $k(x, y)=0$
(f) $l(x, y)=2$

9.1.3 Functions of Several Variables and Three Dimensional Space - Part III

In this section, we will introduce traces, contours, and add to our library of graphable functions.

Definitions

A trace of a function of two independent variables, $z=f(x, y)$, in the x direction is a curve of the form $z=f(x, c)$, where c is a constant. Likewise, a trace of a function of two independent variables, $z=f(x, y)$, in the y direction is a curve of the form $z=f(c, y)$, where c is a constant.

A contour (or level curve) of a function $z=f(x, y)$ is a curve of the form $k=f(x, y)$, where k is a constant.

Question 1. For the following functions, sketch the trace of the function in the x direction at $c=2$. Sketch the trace of the function in the y direction at $c=1$.
(a) $f(x, y)=x^{2}+y^{2}$
(b) $g(x, y)=\frac{x}{y}$
(c) $l(x, y)=2$

Question 2. For the functions in Question 1, plot the contours for $k=-1,0$, and 1 .

Important Example

A function $z=f(x, y)$ is said to be radially symmetric if it can be expressed in the form $z=h(r)$, where $r=\sqrt{x^{2}+y^{2}}$ as in polar coordinates. In other words, the output of the function $f(x, y)$ at a point (x, y) depends only on the distance $r=\sqrt{x^{2}+y^{2}}$ of the point from the origin in the $x y$-plane.

Radially symmetric functions can be sketched quite easily. First graph the trace in the y direction at $c=0$ on the $y z$-plane. Then rotate that graph about the z-axis.

Question 3. Consider the function $f(x, y)=\left(x^{2}+y^{2}\right)^{2}$. Notice that $f(x, y)=\left(r^{2}\right)^{2}=r^{4}$, where $r=$ $\sqrt{x^{2}+y^{2}}$. Thus $f(x, y)$ is radially symmetric. Sketch a graph of $f(x, y)$.

Question 4. Sketch a graph of $g(x, y)=\sin \left(\sqrt{x^{2}+y^{2}}\right)$.

Question 5. (a) Which of the examples from the beginning of the 9.1 - Part II worksheet are radially symmetric?
(b) What can you say about the contours of a radially symmetric function?

