10.6 Directional Derivatives and Gradients

In this section, we will introduce the concepts of the directional derivative and gradient.

The Directional Derivative

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function. The directional derivative of f at the point \mathbf{x} in the direction of the unit vector $\hat{\mathbf{u}}$ denoted by $D_{\hat{\mathbf{u}}} f(\mathbf{x})$ and is defined as

$$
D_{\hat{\mathbf{u}}} f(\mathbf{x})=\lim _{h \rightarrow 0} \frac{f(\mathbf{x}+h \hat{\mathbf{u}})-f(\mathbf{x})}{h} .
$$

In particular, if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at the point $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ we have that

$$
D_{\hat{\mathbf{u}}} f(\mathbf{x})=\frac{\partial f}{\partial x_{1}} u_{1}+\frac{\partial f}{\partial x_{2}} u_{2}+\cdots+\frac{\partial f}{\partial x_{n}} u_{n} .
$$

The Gradient

Suppose $f(\mathbf{x})$ is differentiable at the point $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$. The gradient of $f(\mathbf{x})$ at the point \mathbf{p} is the vector $\boldsymbol{\nabla} f(\mathbf{p})$ defined as

$$
\boldsymbol{\nabla} f(\mathbf{p})=\frac{\partial f}{\partial x_{1}} \hat{\mathbf{x}_{\mathbf{1}}}+\cdots+\frac{\partial f}{\partial x_{n}} \hat{\mathbf{x}_{\mathbf{n}}} .
$$

In particular, the gradient vector points in the direction of greatest positive change in the function value.

Theorem: Gradient Adjunction Formula

If $f(\mathbf{x})$ is differentiable at a point $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ and $\hat{\mathbf{u}}=\left(u_{1}, \ldots, u_{n}\right)$ is any unit vector, then we have that

$$
D_{\hat{\mathbf{u}}} f(\mathbf{p})=\boldsymbol{\nabla} f(\mathbf{p}) \cdot \hat{\mathbf{u}}=\|\boldsymbol{\nabla} f(\mathbf{p})\| \cos \theta
$$

where θ is the angle between the vectors $\nabla f(\mathbf{p})$ and $\hat{\mathbf{u}}$.

Question 1. For each of the following, find the directional derivative using only the limit definition.
(a) $f(x, y)=5-2 x^{2}-\frac{1}{2} y^{2}$ at the point $(3,4)$ in the direction of the unit vector $(\sqrt{2} / 2, \sqrt{2} / 2)$.
(b) $h(x, y)=e^{x} \sin (y)$ at the point $(1, \pi / 2)$ in the direction of the unit vector $\hat{\mathbf{u}}=-\hat{\mathbf{x}}$.
(c) $f(x, y)=y^{2}-x^{3}-x^{2}$ at the point $(0,0)$ in the direction of the unit vector $(\sqrt{2} / 2,-\sqrt{2} / 2)$.
(d) $f(x, y)=y^{2}-x^{3}-x^{2}$ at the point $(-1,0)$ in the direction of the unit vector $(0,1)$.

Question 2. Let $h(x, y)=x^{2}+y^{2}-1$.
(a) Sketch a contour plot of $h(x, y)$. Make sure to include contours corresponding to at least $h=-1, h=0$, $h=1, h=2$, and $h=3$.
(b) Find the graident of $h(x, y)$.
(c) Find the gradient of $h(x, y)$ at the each points $(\pm 1,0),(0, \pm 1)$. Plot these vectors on your contour plot.
(d) What do you notice about the magnitude of $\nabla h(x, y)$ at these points? The direction in which the gradient vectors point?

Question 3. For each of the following, compute the gradient.
(a) $f(x, y)=x^{2}+y^{2}$
(b) $g(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$
(c) $h(x, y)=\sin ^{2}(\pi x)+\sin ^{2}(\pi y)$.
(d) $u(x, y)=x^{2}+6 x y-y^{2}$

Question 4. (Application:) In this problem, we will explore how we can use the gradient to maximize a function. For this example, let $f(x, y)=4-x^{2}-y^{2}+2 x$.

A contour plot of $f(x, y)=4-x^{2}-y^{2}+2 x$
(a) Find the gradient of $f(x, y)$.
(b) The first step in the algorithm is to pick an arbitrary point $\mathbf{p}_{0}=\left(x_{0}, y_{0}\right)$ in the domain of our function. Let's pick the point $\mathbf{p}_{0}=(2,1)$ as our initial guess. Compute $\boldsymbol{\nabla} f\left(\mathbf{p}_{0}\right)$. Plot the gradient vector at \mathbf{p}_{0} on the contour plot.
(c) We will now "update" our guess by moving a small distance h along the gradient vector and then see where we land. For this example, we'll work with a fairly large step size, say $h=0.25$. Let $\mathbf{p}_{1}=\mathbf{p}_{0}+h \boldsymbol{\nabla} f\left(\mathbf{p}_{0}\right)$ be the next point. Compute \mathbf{p}_{1} and $\boldsymbol{\nabla} f\left(\mathbf{p}_{1}\right)$. Then plot $\boldsymbol{\nabla} f\left(\mathbf{p}_{1}\right)$ on the contour plot.
(d) We can continue this process. The general process we follow is that $\mathbf{p}_{n+1}=\mathbf{p}+h \boldsymbol{\nabla} f\left(\mathbf{p}_{n}\right)$. Using this method, compute \mathbf{p}_{n} and $\nabla f\left(\mathbf{p}_{n}\right)$ for $n=3,4,5$, and plot each of the gradient vectors on the contour plot.
(e) This process will either continue until we reach a point where the gradient vector is zero, or will run off to infinity. Why would the process stop if we had $\boldsymbol{\nabla} f(\mathbf{p})=\mathbf{0}$ for some \mathbf{p} ?

10.7 Optimization

In this section, we will examine critical points of multivariable functions and how to find them.

Definition: Critical Points of Multivariable Functions

Let $f(x, y)$ be a differentiable function. A point $\mathbf{p}=\left(x_{0}, y_{0}\right)$ is a critical point of $f(\mathbf{x})$ if $\boldsymbol{\nabla} f(\mathbf{p})=\mathbf{0}$.
Let $\mathbf{p}=\left(x_{0}, y_{0}\right)$ be a critical point of $f(x, y)$.

- If $f(\mathbf{p}) \geq f(\mathbf{x})$ for all points \mathbf{x} near \mathbf{p}, then \mathbf{p} is a local maximum of f.
- If $f(\mathbf{p}) \leq f(\mathbf{x})$ for all points \mathbf{x} near \mathbf{p}, then \mathbf{p} is a local minumum of f.
- The critical point \mathbf{p} is a saddle point of $f(x, y)$ if it is neither a local maximum nor a local minimum.

Theorem: The Multivariable Second Derivative Test

Suppose we have a function $f(x, y)$ that is differentiable everywhere. Let $\mathbf{p}=\left(x_{0}, y_{0}\right)$ be a critical point of $f(x, y)$. Then, let $D=f_{x x}(\mathbf{p}) f_{y y}(\mathbf{p})-f_{x y}(\mathbf{p})^{2}$. (This D is called the discriminant or Hessian of $f(x, y)$ at \mathbf{p}.)

Then:

- If $D>0$ and $f_{x x}(\mathbf{p})<0$ or $f_{y y}(\mathbf{p})<0$, then f has a local maximum at \mathbf{p}
- If $D>0$ and $f_{x x}(\mathbf{p})>0$ or $f_{y y}(\mathbf{p})>0$, then f has a local minumum at \mathbf{p}
- If $D<0$ then f has a saddle point at \mathbf{p}
- If $D=0$ then this test yields no information about what happens at $\left(x_{0}, y_{0}\right)$.

Theorem: The Extreme Value Theorem

If $f(x, y)$ is continuous on a closed, bounded region $\Omega \subset \mathbb{R}^{2}$, then $f(x, y)$ attains its global maximum and minimum inside Ω.

Question 1. Find and classify all critical points of $f(x, y)=x^{2} y^{2}-6 x^{2} y-4 x y^{2}+24 x y$.

Question 2. Let a and b be any two real numbers, and let $f(x, y)=x y-a x-b y$.
(a) How many local minumum points must $f(x, y)$ have?
(b) How many local maximum points must $f(x, y)$ have?
(c) How many saddle points must $f(x, y)$ have?

Question 3. Find and classify all critical points of the funciton $f(x, y)=22 x y e^{-x^{2}-y^{2}}$ using the second derivative test.

Question 4. A twice-differentiable function $h(x, y)$ is called harmonic on a closed, bounded region Ω if $f_{x x}(x, y)+f_{y y}(x, y)=0$ for each point (x, y) in Ω. Harmonic functions satisfy the extrema principle - all of their minima and maxima lie on the boundary of Ω and the only critical points h can have on the interior of Ω are the saddle points.
(a) Use the Extreme Value Theorem to show that $h(x, y)$ must have maximum and minumum values on the boundary of Ω.
(b) Use the extrema principle to argue that, if $h(x, y)$ is constant on the boundary of Ω, then $h(x, y)$ must be constant on all of Ω.

Question 5. Airlines place stringent restrictions on what is allowed carry-on luggage. In addition to requirements on weight, airlines require that length of the bag plus its height cannot exceed 45 in , so tha the bag is able to fit in an overhead bin.

Let ℓ, w, and h be the length, width, and height (in inches) of the bag. In this problem, we will find the dimensions of the bag of largest volume $V=f(\ell, w, h)=\ell w h$ that meets these requirements.
(a) Use the constraint $\ell+h=45$ to rewrite the volume as a function $V=V(\ell, w)$.
(b) Explain why the domain over which V is defined is the triangular region R with vertices $(0,0),(45,0)$ and $(0,45)$ (in (ℓ, w)-coordinates).
(c) Find the critical points, if any, of V on the interior of R.
(d) Find the maximum value of V on the boundary of the region R, and then determine the dimensions of a bag with maximum value on the entire region R.

