10.2 First Order Partial Derivatives

In this section, we will ...

•••

Question 1. For each of the following, compute the partial derivative specified using only the limit definition.

(a) $\frac{\partial f}{\partial x}$ for $f(x, y) = x^2 + 3xy + y^2$

(b)
$$\frac{\partial f}{\partial y}$$
 for $f(x, y) = x^2 + 3xy + y^2$

(c)
$$\frac{\partial f}{\partial x}$$
 for $f(x,y) = \frac{1}{1+x^2+y^2}$

Question 2. For each of the following, compute the partial derivative specified (you may use properties of derivatives)

(a)
$$\frac{\partial}{\partial x}(\sin(3x)\cos(3y))$$
 (d) $f_x(2,-2)$ where $f(x,y) = \frac{xy}{x-y}$.

(b) $\frac{\partial}{\partial x} \left(x^8 e^{3y} \right)$

(e) $\frac{\partial}{\partial y} \left(x^8 e^{3y} \right)$

(c)
$$\frac{\partial}{\partial x} \left(e^{-1/(1-x^2-y^2)} \right)$$
 (f) $\frac{\partial}{\partial y} \left(e^{-1/(1-x^2-y^2)} \right)$

Question 3. Application: The ideal gas law says, that for *n*mol of an "ideal gas", its temperature T (measured in Kelvin), pressure P (Nm⁻²), and volume V (m³) are related by the equation PV = nRT, where R = 8.314Jmol⁻¹K⁻¹. This gives us three functions, P = P(T, V), V = V(T, P), and T = T(P, V). Use the ideal gas law to solve each of the following questions.

(a) Find $\frac{\partial P}{\partial V}$

(b) Find $\frac{\partial V}{\partial T}$

(c) Find $\frac{\partial T}{\partial P}$

(d) Use the last three parts to compute $\frac{\partial P}{\partial V} \frac{\partial V}{\partial T} \frac{\partial T}{\partial P}$.*

^{*}This result is known as the "Cyclic Derivative Theorem", and holds in general whenever you have an implicit equation of the form f(x, y, z) = 0.

Question 4. Challenge Problem: Consider the function

$$f(x,y) = \begin{cases} e^{\frac{-1}{1 - (x^2 + y^2)}} & 0 \le x^2 + y^2 < 1\\ 0 & \text{otherwise} \end{cases}$$

(a) Compute $f_x(x,y)$ and $f_y(x,y)$ for points inside the open unit disk $0 \le x^2 + y^2 < 1$.

(b) Compute $f_x(x,y)$ and $f_y(x,y)$ for points outside the open unit disk, that is, when $x^2 + y^2 > 1$.

(c) At the boundary of these two regions is the unit circle $x^2 + y^2 = 1$. Use your answers to parts (a) and (b) to show that $f_x(x, y)$ and $f_y(x, y)$ are continuous at any point on the unit circle. (Hint: What value do $f_x(x, y)$ and $f_y(x, y)$ approach as (x, y) approach a boundary point from the inside of the unit disk?)