10.2 First Order Partial Derivatives

In this section, we will ...

\cdots
\cdots

Question 1. For each of the following, compute the partial derivative specified using only the limit definition.
(a) $\frac{\partial f}{\partial x}$ for $f(x, y)=x^{2}+3 x y+y^{2}$
(b) $\frac{\partial f}{\partial y}$ for $f(x, y)=x^{2}+3 x y+y^{2}$
(c) $\frac{\partial f}{\partial x}$ for $f(x, y)=\frac{1}{1+x^{2}+y^{2}}$

Question 2. For each of the following, compute the partial derivative specified (you may use properties of derivatives)
(a) $\frac{\partial}{\partial x}(\sin (3 x) \cos (3 y))$
(d) $f_{x}(2,-2)$ where $f(x, y)=\frac{x y}{x-y}$.
(b) $\frac{\partial}{\partial x}\left(x^{8} e^{3 y}\right)$
(e) $\frac{\partial}{\partial y}\left(x^{8} e^{3 y}\right)$
(c) $\frac{\partial}{\partial x}\left(e^{-1 /\left(1-x^{2}-y^{2}\right)}\right)$
(f) $\frac{\partial}{\partial y}\left(e^{-1 /\left(1-x^{2}-y^{2}\right)}\right)$

Question 3. Application: The ideal gas law says, that for $n \mathrm{~mol}$ of an "ideal gas", its temperature T (measured in Kelvin), pressure $P\left(\mathrm{Nm}^{-2}\right)$, and volume $V\left(\mathrm{~m}^{3}\right)$ are related by the equation $P V=n R T$, where $R=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$. This gives us three functions, $P=P(T, V), V=V(T, P)$, and $T=T(P, V)$. Use the ideal gas law to solve each of the following questions.
(a) Find $\frac{\partial P}{\partial V}$
(b) Find $\frac{\partial V}{\partial T}$
(c) Find $\frac{\partial T}{\partial P}$
(d) Use the last three parts to compute $\frac{\partial P}{\partial V} \frac{\partial V}{\partial T} \frac{\partial T}{\partial P}$.*

[^0]Question 4. Challenge Problem: Consider the function

$$
f(x, y)= \begin{cases}e^{\frac{-1}{1-\left(x^{2}+y^{2}\right)}} & 0 \leq x^{2}+y^{2}<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute $f_{x}(x, y)$ and $f_{y}(x, y)$ for points inside the open unit disk $0 \leq x^{2}+y^{2}<1$.
(b) Compute $f_{x}(x, y)$ and $f_{y}(x, y)$ for points outside the open unit disk, that is, when $x^{2}+y^{2}>1$.
(c) At the boundary of these two regions is the unit circle $x^{2}+y^{2}=1$. Use your answers to parts (a) and (b) to show that $f_{x}(x, y)$ and $f_{y}(x, y)$ are continuous at any point on the unit circle. (Hint: What value do $f_{x}(x, y)$ and $f_{y}(x, y)$ approach as (x, y) approach a boundary point from the inside of the unit disk?)

[^0]: *This result is known as the "Cyclic Derivative Theorem"', and holds in general whenever you have an implicit equation of the form $f(x, y, z)=0$.

