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10.1 Limits

In this section, we will explore how limts work for functions of more than one variable.

Definition: Limit of Multivariable Functions

Let f(x, y) be a function of two variables defined on some region Ω ⊆ R2, and let (a, b) be a point containd
within Ω. We say that f has a limit L as (x, y) approaches (a, b) provided that, no mater what error
ε > 0 we pick, there is some tolerance term δ > 0 such that whenever

√
(x− a)2 + (y − b)2 ≤ δ then

|f(x, y)− L| ≤ ε, and we write lim
(x,y)→(a,b)

f(x, y) = L in this case.

We say that a function f(x, y) is continuous at (a, b) if f(x, y) is defined at (a, b), the limit
lim

(x,y)→(a,b)
f(x, y) exists and lim

(x,y)→(a,b)
f(x, y) = f(a, b).

There’s a different way to do limits in multiple dimensions, the idea is to approach the point (a, b) from
a variety of directions. The natural way to do this is to use paths/curves!

Limits along Paths

Let f(x, y) be a function of two variables defined on some region Ω ⊆ R2. Then, we have that
lim

(x,y)→(a,b)
f(x, y) = L if and only if, for any continuous path γ : (−1, 1) → Ω with γ(0) = (a, b), we

have that lim
t→0

f(γ(t)) = L. 1

It is not sufficient to check one path, one must check all paths. However, if one finds two paths γ1
and γ2 such that the limit of f along the γ curves are different, then you may conclude that the limit of
f as (x, y) approaches (a, b) does not exist.

1Here that we are taking the limit of a one variable function, g(t) = f(γ(t)), so we can apply the same methods that we did
in single-variable calculus!
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Question 1. Consider the function f(x, y) = 2xy
x2+y2

.

(a) Compute the limit of f(x, y) at the point (0, 0) along the lines y = x.
(Hint: One possible parameterization is γ(t) = (t, t).)

(b) Compute the limit of f(x, y) at the point (0, 0) along the line y = −x.
(Hint: One possible parameterization is γ(t) = (−t, t).)

(c) What can you conclude about lim
(x,y)→(0,0)

f(x, y)?
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Question 2. For each of the following, compute the limit or show why it does not exist:

(a) lim
(x,y)→(2,0)

x2y3 − 4y3

xy3 − 2y3

(b) lim
(x,y)→(0,0)

4x2 + 10y2 + 4

4x2 − 10y2 + 6

(c) lim
(x,y)→(2,5)

√
1

xy

(d) lim
(x,y)→(1,0)

x2 − 2xy + y2

x− 1
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10.2 First Order Partial Derivatives

In this section, we will ...

...

...

Question 1. For each of the following, compute the partial derivative specified using only the limit defi-
nition.
(a) ∂f

∂x for f(x, y) = x2 + 3xy + y2

(b) ∂f
∂y for f(x, y) = x2 + 3xy + y2

(c) ∂f
∂x for f(x, y) = 1

1+x2+y2
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Question 2. For each of the following, compute the partial derivative specified (you may use properties of
derivatives)

(a) ∂
∂x(sin(3x) cos(3y))

(b) ∂
∂x

(
x8e3y

)

(c) ∂
∂x

(
e−1/(1−x2−y2)

)

(d) fx(2,−2) where f(x, y) = xy
x−y .

(e) ∂
∂y

(
x8e3y

)

(f) ∂
∂y

(
e−1/(1−x2−y2)

)
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Question 3. Application: The ideal gas law says, that for nmol of an “ideal gas”, its temperature T
(measured in Kelvin), pressure P (Nm−2), and volume V (m3) are related by the equation PV = nRT , where
R = 8.314Jmol−1K−1. This gives us three functions, P = P (T, V ), V = V (T, P ), and T = T (P, V ). Use the
ideal gas law to solve each of the following questions.
(a) Find ∂P

∂V

(b) Find ∂V
∂T

(c) Find ∂T
∂P

(d) Use the last three parts to compute ∂P

∂V

∂V

∂T

∂T

∂P
.∗

∗This result is known as the “Cyclic Derivative Theorem”’, and holds in general whenever you have an implicit equation of
the form f(x, y, z) = 0.
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Question 4. Challenge Problem: Consider the function

f(x, y) =

e

−1

1−
(
x2+y2

)
0 ≤ x2 + y2 < 1

0 otherwise

(a) Compute fx(x, y) and fy(x, y) for points inside the open unit disk 0 ≤ x2 + y2 < 1.

(b) Compute fx(x, y) and fy(x, y) for points outside the open unit disk, that is, when x2 + y2 > 1.

(c) At the boundary of these two regions is the unit circle x2 + y2 = 1. Use your answers to parts (a) and
(b) to show that fx(x, y) and fy(x, y) are continuous at any point on the unit circle. (Hint: What value
do fx(x, y) and fy(x, y) approach as (x, y) approach a boundary point from the inside of the unit disk?)
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