10.1 Limits

In this section, we will explore how limts work for functions of more than one variable.

Definition: Limit of Multivariable Functions

Let $f(x, y)$ be a function of two variables defined on some region $\Omega \subseteq \mathbb{R}^{2}$, and let (a, b) be a point containd within Ω. We say that f has a limit L as (x, y) approaches (a, b) provided that, no mater what error $\varepsilon>0$ we pick, there is some tolerance term $\delta>0$ such that whenever $\sqrt{(x-a)^{2}+(y-b)^{2}} \leq \delta$ then $|f(x, y)-L| \leq \varepsilon$, and we write $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$ in this case.

We say that a function $f(x, y)$ is continuous at (a, b) if $f(x, y)$ is defined at (a, b), the limit $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists and $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

There's a different way to do limits in multiple dimensions, the idea is to approach the point (a, b) from a variety of directions. The natural way to do this is to use paths/curves!

Limits along Paths

Let $f(x, y)$ be a function of two variables defined on some region $\Omega \subseteq \mathbb{R}^{2}$. Then, we have that $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$ if and only if, for any continuous path $\gamma:(-1,1) \rightarrow \Omega$ with $\gamma(0)=(a, b)$, we have that $\lim _{t \rightarrow 0} f(\gamma(t))=L .{ }^{1}$

It is not sufficient to check one path, one must check all paths. However, if one finds two paths γ_{1} and γ_{2} such that the limit of f along the γ curves are different, then you may conclude that the limit of f as (x, y) approaches (a, b) does not exist.

[^0]Question 1. Consider the function $f(x, y)=\frac{2 x y}{x^{2}+y^{2}}$.
(a) Compute the limit of $f(x, y)$ at the point $(0,0)$ along the lines $y=x$. (Hint: One possible parameterization is $\gamma(t)=(t, t)$.)
(b) Compute the limit of $f(x, y)$ at the point $(0,0)$ along the line $y=-x$. (Hint: One possible parameterization is $\gamma(t)=(-t, t)$.)
(c) What can you conclude about $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$?

Question 2. For each of the following, compute the limit or show why it does not exist:
(a) $\lim _{(x, y) \rightarrow(2,0)} \frac{x^{2} y^{3}-4 y^{3}}{x y^{3}-2 y^{3}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{4 x^{2}+10 y^{2}+4}{4 x^{2}-10 y^{2}+6}$
(c) $\lim _{(x, y) \rightarrow(2,5)} \sqrt{\frac{1}{x y}}$
(d) $\lim _{(x, y) \rightarrow(1,0)} \frac{x^{2}-2 x y+y^{2}}{x-1}$

10.2 First Order Partial Derivatives

In this section, we will ...

\cdots
\cdots

Question 1. For each of the following, compute the partial derivative specified using only the limit definition.
(a) $\frac{\partial f}{\partial x}$ for $f(x, y)=x^{2}+3 x y+y^{2}$
(b) $\frac{\partial f}{\partial y}$ for $f(x, y)=x^{2}+3 x y+y^{2}$
(c) $\frac{\partial f}{\partial x}$ for $f(x, y)=\frac{1}{1+x^{2}+y^{2}}$

Question 2. For each of the following, compute the partial derivative specified (you may use properties of derivatives)
(a) $\frac{\partial}{\partial x}(\sin (3 x) \cos (3 y))$
(d) $f_{x}(2,-2)$ where $f(x, y)=\frac{x y}{x-y}$.
(b) $\frac{\partial}{\partial x}\left(x^{8} e^{3 y}\right)$
(e) $\frac{\partial}{\partial y}\left(x^{8} e^{3 y}\right)$
(c) $\frac{\partial}{\partial x}\left(e^{-1 /\left(1-x^{2}-y^{2}\right)}\right)$
(f) $\frac{\partial}{\partial y}\left(e^{-1 /\left(1-x^{2}-y^{2}\right)}\right)$

Question 3. Application: The ideal gas law says, that for $n \mathrm{~mol}$ of an "ideal gas", its temperature T (measured in Kelvin), pressure $P\left(\mathrm{Nm}^{-2}\right)$, and volume $V\left(\mathrm{~m}^{3}\right)$ are related by the equation $P V=n R T$, where $R=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$. This gives us three functions, $P=P(T, V), V=V(T, P)$, and $T=T(P, V)$. Use the ideal gas law to solve each of the following questions.
(a) Find $\frac{\partial P}{\partial V}$
(b) Find $\frac{\partial V}{\partial T}$
(c) Find $\frac{\partial T}{\partial P}$
(d) Use the last three parts to compute $\frac{\partial P}{\partial V} \frac{\partial V}{\partial T} \frac{\partial T}{\partial P}$.*

[^1]Question 4. Challenge Problem: Consider the function

$$
f(x, y)= \begin{cases}e^{\frac{-1}{1-\left(x^{2}+y^{2}\right)}} & 0 \leq x^{2}+y^{2}<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute $f_{x}(x, y)$ and $f_{y}(x, y)$ for points inside the open unit disk $0 \leq x^{2}+y^{2}<1$.
(b) Compute $f_{x}(x, y)$ and $f_{y}(x, y)$ for points outside the open unit disk, that is, when $x^{2}+y^{2}>1$.
(c) At the boundary of these two regions is the unit circle $x^{2}+y^{2}=1$. Use your answers to parts (a) and (b) to show that $f_{x}(x, y)$ and $f_{y}(x, y)$ are continuous at any point on the unit circle. (Hint: What value do $f_{x}(x, y)$ and $f_{y}(x, y)$ approach as (x, y) approach a boundary point from the inside of the unit disk?)

[^0]: ${ }^{1}$ Here that we are taking the limit of a one variable function, $g(t)=f(\gamma(t))$, so we can apply the same methods that we did in single-variable calculus!

[^1]: *This result is known as the "Cyclic Derivative Theorem"', and holds in general whenever you have an implicit equation of the form $f(x, y, z)=0$.

