10.1 Limits

In this section, we will explore how limts work for functions of more than one variable.

Definition: Limit of Multivariable Functions

Let f(x, y) be a function of two variables defined on some region $\Omega \subseteq \mathbb{R}^2$, and let (a, b) be a point containd within Ω . We say that f has a limit L as (x, y) approaches (a, b) provided that, no mater what error $\varepsilon > 0$ we pick, there is some tolerance term $\delta > 0$ such that whenever $\sqrt{(x-a)^2 + (y-b)^2} \le \delta$ then $|f(x, y) - L| \le \varepsilon$, and we write $\lim_{\substack{(x,y) \to (a,b)}} f(x, y) = L$ in this case. We say that a function f(x, y) is **continuous** at (a, b) if f(x, y) is defined at (a, b), the limit $\lim_{\substack{(x,y) \to (a,b)}} f(x, y)$ exists and $\lim_{\substack{(x,y) \to (a,b)}} f(x, y) = f(a, b)$.

There's a different way to do limits in multiple dimensions, the idea is to approach the point (a, b) from a variety of directions. The natural way to do this is to use paths/curves!

Limits along Paths

Let f(x, y) be a function of two variables defined on some region $\Omega \subseteq \mathbb{R}^2$. Then, we have that $\lim_{(x,y)\to(a,b)} f(x,y) = L$ if and only if, for any continuous path $\gamma : (-1,1) \to \Omega$ with $\gamma(0) = (a,b)$, we have that $\lim_{t\to 0} f(\gamma(t)) = L$.¹

It is not sufficient to check one path, one must check all paths. However, if one finds two paths γ_1 and γ_2 such that the limit of f along the γ curves are different, then you may conclude that the limit of f as (x, y) approaches (a, b) does not exist.

¹Here that we are taking the limit of a one variable function, $g(t) = f(\gamma(t))$, so we can apply the same methods that we did in single-variable calculus!

Question 1. Consider the function $f(x,y) = \frac{2xy}{x^2+y^2}$.

(a) Compute the limit of f(x, y) at the point (0, 0) along the lines y = x. (**Hint:** One possible parameterization is $\gamma(t) = (t, t)$.)

(b) Compute the limit of f(x, y) at the point (0, 0) along the line y = -x. (**Hint:** One possible parameterization is $\gamma(t) = (-t, t)$.)

(c) What can you conclude about $\lim_{(x,y)\to(0,0)} f(x,y)$?

Question 2. For each of the following, compute the limit or show why it does not exist:

(a) $\lim_{(x,y)\to(2,0)} \frac{x^2y^3 - 4y^3}{xy^3 - 2y^3}$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{4x^2 + 10y^2 + 4}{4x^2 - 10y^2 + 6}$$

(c)
$$\lim_{(x,y)\to(2,5)}\sqrt{\frac{1}{xy}}$$

(d)
$$\lim_{(x,y)\to(1,0)} \frac{x^2 - 2xy + y^2}{x - 1}$$

10.2 First Order Partial Derivatives

In this section, we will ...

•••

Question 1. For each of the following, compute the partial derivative specified using only the limit definition.

(a) $\frac{\partial f}{\partial x}$ for $f(x, y) = x^2 + 3xy + y^2$

(b)
$$\frac{\partial f}{\partial y}$$
 for $f(x, y) = x^2 + 3xy + y^2$

(c)
$$\frac{\partial f}{\partial x}$$
 for $f(x,y) = \frac{1}{1+x^2+y^2}$

Question 2. For each of the following, compute the partial derivative specified (you may use properties of derivatives)

(a)
$$\frac{\partial}{\partial x}(\sin(3x)\cos(3y))$$
 (d) $f_x(2,-2)$ where $f(x,y) = \frac{xy}{x-y}$.

(b) $\frac{\partial}{\partial x} \left(x^8 e^{3y} \right)$

(e) $\frac{\partial}{\partial y} \left(x^8 e^{3y} \right)$

(c)
$$\frac{\partial}{\partial x} \left(e^{-1/(1-x^2-y^2)} \right)$$
 (f) $\frac{\partial}{\partial y} \left(e^{-1/(1-x^2-y^2)} \right)$

Question 3. Application: The ideal gas law says, that for *n*mol of an "ideal gas", its temperature T (measured in Kelvin), pressure P (Nm⁻²), and volume V (m³) are related by the equation PV = nRT, where R = 8.314Jmol⁻¹K⁻¹. This gives us three functions, P = P(T, V), V = V(T, P), and T = T(P, V). Use the ideal gas law to solve each of the following questions.

(a) Find $\frac{\partial P}{\partial V}$

(b) Find $\frac{\partial V}{\partial T}$

(c) Find $\frac{\partial T}{\partial P}$

(d) Use the last three parts to compute $\frac{\partial P}{\partial V} \frac{\partial V}{\partial T} \frac{\partial T}{\partial P}$.*

^{*}This result is known as the "Cyclic Derivative Theorem", and holds in general whenever you have an implicit equation of the form f(x, y, z) = 0.

Question 4. Challenge Problem: Consider the function

$$f(x,y) = \begin{cases} e^{\frac{-1}{1 - (x^2 + y^2)}} & 0 \le x^2 + y^2 < 1\\ 0 & \text{otherwise} \end{cases}$$

(a) Compute $f_x(x,y)$ and $f_y(x,y)$ for points inside the open unit disk $0 \le x^2 + y^2 < 1$.

(b) Compute $f_x(x,y)$ and $f_y(x,y)$ for points outside the open unit disk, that is, when $x^2 + y^2 > 1$.

(c) At the boundary of these two regions is the unit circle $x^2 + y^2 = 1$. Use your answers to parts (a) and (b) to show that $f_x(x, y)$ and $f_y(x, y)$ are continuous at any point on the unit circle. (Hint: What value do $f_x(x, y)$ and $f_y(x, y)$ approach as (x, y) approach a boundary point from the inside of the unit disk?)