Exam 3 is fomorma! mam

Big topics. Are knyth
Vector fields
Line integrals
Parametric Surfaces
flux integrals

Curl divergence
Green's theorem Path Iudependerve
FTC live integrals
"Staluard trikk" for paranotic cures:

$$
\begin{aligned}
& y=f(x) \Rightarrow \vec{r}(t)=\langle t, f(t)\rangle \\
& \underset{a \leq x \leq b}{ } \quad+\text { bounls }=7^{x} \text { bounds } \\
& \text { Ex } f(x)=x^{2}+3 x+4 \quad-3 \leq x \leq 17 \\
& 11 \\
& \vec{r}(t)=\left\langle t, t^{2}+3 t+4\right\rangle ;-3 \leq t \leq 17 .
\end{aligned}
$$

$$
s=\int_{a}^{b}\left\|\vec{r}^{\prime}(t)\right\| d t=\int_{a}^{b} \sqrt{\left(x^{2}\right)^{2}+\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}} d t
$$

Exam 3 Outline (Motivating Questions)

- 9.8: Arc Length
- How can a definite integral be used to measure the length of a curve in 2- or 3-space?
- Why is arc length useful as a parameter?
\rightarrow 12.1: Vector Fields
- What is a vector field? Gradient vector fields, P-I U. fads
- What are some familiar contexts in which vector fields arise?
- How do we draw a vector field?
- How do gradients of functions with partial derivatives connect to vector fields?
12.2: The Idea of a Line integral

- What is an oriented curve and how can we represent one algebraically?
- What is the meaning of the line integral of a vector-valued function along a curve and how can we estimate if its value is positive, negative, or zero?
- What are important properties of the line integral of a vector-valued functions along a curve?
12.3: Using Parameterizations to Compute Line Integrals
- How can we use a parametrization of an oriented curve C to calculate $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$
- How does the parametrization chosen for an oriented curve C alter the value of the line integral $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$
$\left.=\int_{a}^{b} \underset{\sim}{F}(t)\right)$. What can be said about the line integral of a vector field along two different - $r^{\prime}(t) d t$ oriented curves when the curves have the same starting point and same ending point?
12.5: Path Independence and FTC for Line Integrals Grudent ufrecks $=P_{1} I U, f 5$.
- What characteristic of a vector field \boldsymbol{F} will make $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$ have the same value for every oriented curve from a point P to a point Q ?
- What special properties do gradient vector fields have?
- Given a gradient vector field \boldsymbol{F}, how can we efficiently find a potential function f so that $\boldsymbol{F}=\nabla f$
12.7: The Curl of a Vector Field
- What is meant by rotation of a vector field in a plane?
- How can a two-dimensional measurement of rotation be generalized to work in three dimensions?
- How can the rotational strength of a vector field be measured?
2.8: Green's Theorem
- How can we calculate the circulation of a two-dimensional vector field \boldsymbol{F} around a closed curve when \boldsymbol{F} is not path-independent?
- What is the meaning of the double integral of the circulation density of a smooth two-dimensional vector field on a region R bounded by a closed curve that does not intersect itself?
11.6: Surfaces Defined Parametrically and Surface Area
- What is a parametrization of a surface?
- How do we find the surface area of a parametrically defined surface?
12.9: Flux Integrals
- How can we measure how much of a vector field flows through a surface in space?
- How can we calculate the amount of a vector field that flows through common surfaces, such as the graph of a function $z=f(x, y)$
12.6: The Divergence of a Vector Field
- How can you measure where a vector field is created (or destroyed)?
- How can you measure where a vector field's strength is increasing or decreasing?
- What does the divergence of a vector field measure and how can you visually estimate whether the divergence of a vector field is positive or negative?

$$
F=\langle P, Q, R\rangle
$$

$\operatorname{div}(F)=P_{x}+Q_{y}+R_{z}$

Exam 3 Outline (Important Concepts and Formulas)

- Arc-length formula
- Reparametrization and arclength parameterization
- Vector fields
- How to plot a vector field
- Gradient vector fields
- Line integrals with and without using parameterizations
- Work done by a vector field
- Path-independence
- How to tell if a vector field is path-independent
- FTC for Line Integrals
- Potential functions and how to find them
- How to compute curl of a vector field in 2d, 3d
- Interpretations of curl
- What does it mean if $\operatorname{curl}(\boldsymbol{F})=$ $\mathbf{0}$? What if curl is non-zero?
- What is a closed curve?
- What is a simply connected region?
- What is a simple closed curve?
- What is Green's theorem and when can we use it?
- Circulation \& circulation density of a vector field
- Parametrizations of surfaces
- Common examples:
- Graphs of functions of the form $z=f(x, y)$
- Surfaces of revolution
- Cylinders
- Spheres
- Planes
- Cones
- Surface area formula from a parameterization
- What is the normal vector of a surface? How is it computed and how do you visualize it?
- What does it mean for a surface to be oriented?
- Flux (i.e. Surface) integrals
- How to compute surface integrals with(out) using a parameterization
- Divergence of a vector field
- Source-free / Divergence-free
- Interpretations of divergence
- Approximation of flux by divergence and small surfaces

Purrmetivic Surtues:
$z=f(x, y)$ lor $y=f(x, z)$ etc.)
"Std trick"

$$
\begin{array}{ll}
\vec{r}(s, t)=\langle s, t, f(s, t)\rangle \\
\vec{r}(r, t)=\langle s, f(s t), t\rangle & y=f(x, z) \\
r(s, t)=\langle f(s t), s, t\rangle & x=f(y, z)
\end{array}
$$

S is a "Surface of vevolution".

$$
r(s, t)=\langle\langle\underline{L}(t) \cos (s), r(t) \sin (s), t\rangle
$$

$z=\sqrt{x} \quad$ about z-axis

(0) heint t, radur $=t^{2}$.

$$
f l u x=\iint_{S} \vec{F} \cdot \vec{n} d A=\iint F(r(s t)) \cdot\left(\vec{r}_{s} \times \vec{r}_{t}\right) d A
$$

