Exam 2 review
Exam 2 is tomorrow (in-cluss)

- Lagrange multiplear will be on the exam.
- Double, triple lints will be on exam.

$$
\begin{aligned}
& f=f(x, y, z) \\
& \vec{\nabla} f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle \\
& \vec{\nabla} f(\vec{p})=\left\langle\frac{\partial f}{\partial x}(\vec{p}), \frac{\partial f}{\partial y}(\stackrel{p}{p}), \frac{\partial f}{\partial z}(p)\right\rangle
\end{aligned}
$$

Think: $\nabla \vec{f}[\vec{p})$ is a vector bussed @ $\stackrel{\rightharpoonup}{p}$

in Gale 1
finds extremn for $y \neq(x)$ on $[a, b]$
(1) find critical Values for $y=f(x)$ bin first dent throw away Extreme not whim $[a, b]$.
(2) $2^{\text {ned }}$ derv. test tolls you about loan l behan (ie whit happens nom Crit values),
(3) function kills you whit hammers (e) endpoints.

Cak 3 Poo:
(Lagrane muit pioblens):
$\nabla \vec{f}(\vec{p})=\lambda \nabla g(\vec{p})$ So Soluticus look lite

$$
(\vec{p}, \lambda)
$$

test all Solns to see if Hey're mms/masee by

Evalurta your func. (a) that pant.

if $w_{2}>w_{1}, w_{3} \quad f\left(p_{2}\right)$ is max Vuhe.

Initials: \square
Problem 3 (20 points). Use the method of Lagrange multipliers to find the maximum value taken by the function $f(x, y, z)=\underline{3 y z-x^{2}}$ on the plane $-2 x+6 y+6 z=11$.
(1) $\nabla f, \nabla g$.
(c) $\nabla^{\prime} \vec{F}=\langle-2 x, 3 z, 3 y\rangle$

$$
\vec{\nabla} g=\langle-2,6,6\rangle
$$

(2) Setup suss: of EMus:

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
-2 x+6 y+6 z=11 \\
\overrightarrow{\nabla f}=\lambda \overrightarrow{\nabla g}
\end{array}\right. \\
-2 x=\lambda(-2), \quad 3 z=6 \lambda, \quad 3 y=6 \lambda
\end{array}\right.
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
-2 x+6 y+6 z=11 \\
-2 x=-2 \lambda \\
3 z=6 \lambda \\
3 y=6 \lambda
\end{array}\right\} \Rightarrow \begin{array}{l}
x=\lambda \\
z=2 \lambda \\
y=2 \lambda
\end{array} \\
& \begin{array}{l}
-2 \lambda+6(2 \lambda)+6(2 \lambda)=11 \\
y=1, z=1,
\end{array} \\
& \begin{array}{l}
-2 \lambda+12 \lambda+12 \lambda=11 \\
22 \lambda=11 \Rightarrow \lambda=11 / 22=1 / 2
\end{array}
\end{aligned}
$$

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=: I
$$

$\sqrt{\pi}$
$e^{-x^{2}}$ is relind to Namal
distb'n.
Truk vather then compation $I_{1}{ }^{\text {welll }} I^{2}$ compuste instad

$$
\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)^{2}=\left(\int_{-\infty}^{\infty} e^{\frac{I}{-x^{2}}} d x\right)\left(\int_{-\infty}^{\infty} e^{-y^{2}} d y\right)
$$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d y d x \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} \underbrace{d y d x}_{d A(x, y)} \\
& =\int_{0}^{2 \pi} \int_{\substack{\text { chane to } \\
\text { polv cords! }}}^{\infty} e^{-r^{2}} r d r d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \int_{0}^{\infty} r e^{-r^{2}} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{-\infty} \frac{u=-r^{2}}{1} \frac{1}{2} e^{u} d u d \theta \\
& d u=-2 r d r . \\
& =\int_{0}^{2 \pi} \int_{-\infty}^{0} \frac{1}{2} e^{u} d u d \theta \\
& =\int_{0}^{2 \pi} \cdot \frac{1}{2}\left(e^{0}-e^{-\infty}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \int_{0}^{2 \pi} \frac{1}{2} \quad d \theta=\frac{2 \pi}{2}-\frac{0}{2}=\pi \\
& I^{2}=\pi \Rightarrow I=\sqrt{\pi}
\end{aligned}
$$

Ex Setup an intesmal that competes the volume of the so: Loumlet below by the
plane $z=1$, above by the boll $0 \leq x^{2}+y^{2}+z^{2} \leq 9$

$$
\begin{aligned}
& \operatorname{Vol}(S)=\iiint_{S} d V \\
& P \neq 0 \quad P=? \rightarrow P=3
\end{aligned}
$$

$$
z=\rho \cos \varphi \quad 1=3 \cos \varphi \Rightarrow \varphi=\arccos (1 / 3)
$$

let's do it in sph. coords.

$$
\begin{aligned}
z=\rho \cos \varphi \Rightarrow 1=\rho \cos \varphi \Rightarrow \rho & =\sec \varphi \\
& =1 / \cos \varphi
\end{aligned}
$$

Exam 2 Outline (Motivating Questions)

10.8 Lagrange Multipliers
[- What geometric condition enables us to optimize a function Solve for L $f=f(x, y)$ subject to a constraint given by $k=g(x, y)$, where k is a constant?

- How can we exploit this geometric condition to find the extreme values of a function subject to a constraint?
- No Riemann Sums on then Exam.

Il - How is the double integral of a continuous function $f=f(x, y)$ defined?

- What are two things the double integral of a function can tell us?
$f d x d y$. How do we evaluate a double integral over a rectangle as an iterated integral, and why does this process work?
$7^{11.3}$ Double integrals over general regions
- How do we define a double integral over a non-rectangular region?
- What general form does an iterated integral over a non-rectangular region

11.4 Applications of double integrals
- If we have a mass density function for a lamina (thin plate), how does a double integral determine the mass of the lamina?
- How may a double integral be used to find the area between two curves?
- Given a mass density function on a lamina, how can we find the lamina's center of mass?
11.5 Double integrals in polar coordinates
"Polar trick" for intents $\int e^{x^{2}} d x$
- What are the polar coordinates of a point in two-space?
- How do we convert between polar coordinates and rectangular coordinates?
- What is the area element in polar coordinates?
- How do we convert a double integral in rectangular coordinates to a double integral in polar coordinates?
11.7 Triple integrals
- How are a triple Riemann sum and the corresponding triple integral of a continuous function $f=f(x, y, z)$ defined?
- What are two things the triple integral of a function can tell us?
11.8 Triple integrals in Cylindrical and Spherical coordinates
- What are the cylindrical coordinates of a point, and how are they related to Cartesian coordinates?
- What is the volume element in cylindrical coordinates? How does this inform us about evaluating a triple integral as an iterated integral in cylindrical coordinates?
- What are the spherical coordinates of a point, and how are they related to Cartesian coordinates?
- What is the volume element in spherical coordinates? How does this inform us about evaluating a triple integral as an iterated integral in spherical coordinates?
9.6: Vector-Valued Functions
- What is a vector-valued function? What do we mean by the graph of a vectorvalued function?
- What is a parametrization of a curve in \mathbb{R}^{2} ? $\operatorname{In} \mathbb{R}^{3}$?
- What can the parameterization of a curve tell us?
9.7: Derivatives and Integrals of Vector-Valued Functions
- What do we mean by the derivative of a vector-valued function and how do we calculate it?
- What does the derivative of a vector-valued function measure?
- What do we mean by the integral of a vector-valued function and how do we compute it? compute it?

$$
\begin{aligned}
& \text { Standrud Examples: lives, } \\
& \text { Circles, } \\
& \text { Stranded } \\
& \text { Eaviples: } \\
& \text { lives, } \\
& \text { Circles, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { lives, } \\
& \text { Circles, } \\
& \text { curve } y=f(x)
\end{aligned}
$$

Exam 2 Outline (Important Concepts and Formulas)

- Method of Lagrange Multipliers
- Interpretation of λ in a Lagrange multipliers question
- Determining if a solution to Lagrange multipliers question is min or max
- Double Integrals (numerically)
- Double integrals over rectangles
- Double integrals over general regions
- Computing double integrals
- Polar coordinates
- $\quad d A$ in polar coordinates
- Polar to Cartesian and viceversa
- Mass, area, and center of mass computations in 2-D
- Triple integrals over cuboids
- Triple integrals over general regions
- Computing triple integrals
- Cylindrical Coordinates
- dV in cylindrical coordinates
- Cartesian to Cylindrical coordinate conversions (and vice-versa)
- Spherical Coordinates
- dV in spherical coordinates
- Cartesian to Spherical coordinates conversions (and vice-versa)
- Vector-valued functions
- Plots of vector-valued functions
- Forms of vector-valued functions
- Derivatives of vector-valued functions
- Interpretations of derivatives/integrals of vectorvalued functions
- Integrals of vector-valued functions
- Standard parameterizations
- Lines
- (general) circles
- Unit Circle
- Graphs of functions of the form $y=f(x)$
- Derivatives of vector-valued functions
- Interpretations of first, second derivatives of a vector-valued function
- Integrals of vector-valued functions

