Exam Review:
Exam is over $\oint 9.1-9.5,10.1-10.7$.


$$
\begin{aligned}
& \vec{u} \cdot \vec{v}=4 \quad \\
& \|\vec{u} \times \vec{v}\|=3 \quad \text { This was a } 69.4 \text { ww problem } \\
& \text { find } \tan (\theta) \\
& \vec{u} \cdot \vec{v}=\|\vec{u}\| \cdot\|\vec{v}\| \cos \theta \\
& \|\vec{u} \times \vec{v}\|=\|\vec{u}\| \cdot\|\vec{v}\| \sin \theta \\
& \frac{\|\vec{u} \times \vec{v}\|}{\vec{u} \cdot \vec{v}}=\frac{\|\vec{u}\| \cdot\|\overrightarrow{\vec{v}}\| \sin \theta}{\|\vec{u} \cdot \cdot\| \vec{v} \| \cos \theta}=\frac{\sin \theta}{\cos \theta}=\tan \theta=\frac{3}{4}
\end{aligned}
$$

3piont methd for finding sin of a plone
$P, Q, R$ don't lie on the same lue (non-Colinear parls)
(1) find disp. Vectus $\overrightarrow{P Q}, \overrightarrow{P R}$
(2) $\vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R}$

$$
\begin{aligned}
& \vec{n}=\langle a, b, c\rangle \\
& p=\left(x_{0}, y_{0}, z_{0}\right)
\end{aligned}
$$

$\uparrow$
(3) normal vectoo, use $p$ as your "base point"

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

$$
f(x, y)=\frac{x-y}{x+y} @(0,0)
$$

two puths: (1) $y=x$

$$
\begin{aligned}
\lim _{\substack{x \rightarrow 0 \\
y=x}} f(x, y)=\lim _{x \rightarrow 0} f(x, x) & =\lim _{x \rightarrow 0} \frac{x-x}{x+x} \\
& =\lim _{x \rightarrow 0} \frac{0}{2 x}=0
\end{aligned}
$$

(2)

$$
\begin{aligned}
& y=2 x \\
& f(x, 2 x)=\frac{x-2 x}{x+2 x}=\frac{-x}{3 x} \quad \lim _{x \rightarrow 0} \frac{-x}{3 x}=-\frac{1}{3} \neq 0 .
\end{aligned}
$$

$$
f_{x}(a, h)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}
$$

Most Compliaral Ex: dey 2 poly in $x, y$.

$$
7 x^{2}+x y+y^{2}+1
$$

Thusent phe $f(x, y)$ a pont $p=(n, b)$

$$
\begin{aligned}
& z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b) \\
& \text { if } y=f(x) \quad(c a l c 1) \\
& T=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
\end{aligned}
$$

$p=(u, b)$ is a critical point of $f(x, y)$.

$$
D=\vec{\nabla} f(p)=\overrightarrow{0}
$$

- $D>0, f_{x x}>0$ or $f_{y y}>0 \rightarrow p$ is local min
- $D>0$, fax or fay $<0, \rightarrow p$ local max
- $D<0, \rightarrow$ Saddle point
- $D=0$, test is inconclusive.

3 Visualizations: Surface plo (3D)
. Contour plots
Exam 1 Outline (Motivating Questions) $\forall$

- slices
9.1: Functions of several variables and 3-Dimensional Space
- What is a function of several variables? What do we mean by the domain of a function of several variables?
- How do we find the distance between two points in $\mathbb{R}^{3}$ ?
- What is the equation of a sphere in $\mathbb{R}^{3}$ ? $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=R^{2}$
- What is a trace of a function of two variables? What does a trace tell us about a function? = Slice
- What is a level curve of a function of two variables? What does a level curve tell us about a function? = Contour.
9.2: Vectors
- What is a vector? (notations for vectors $\rightarrow\langle, 1\rangle ; \hat{1} \hat{\jmath} \hat{k}$ notus)
- What does it mean for two vectors to be equal?
$\longrightarrow$ • How do we add two vectors together and multiply a vector by a scalar?
- How do we determine the magnitude of a vector? What is a unit vector, and how do we find a unit vector in the direction of a given vector?
9.3: Dot Product

$$
=\text { norm }=1 \text { esth }
$$

- How is the dot product of two vectors defined and what geometric information does it tell us?
$\rightarrow$ • How can we tell if two vectors in $\mathbb{R}^{n}$ are perpendicular?
- How do we find the projection of one vector onto another?
9.4: Cross Product
- How and when is the cross product of two vectors defined? rale.
- What geometric information does the cross product provide?
9.5: Lines and planes in space
- How are lines in $\mathbb{R}^{3}$ similar to and different from lines in $\mathbb{R}^{2}$ ?
- What is the role that vectors play in representing equations of lines, particularly in $\mathbb{R}^{3}$ ? $\quad \overrightarrow{\theta p}+t \vec{V}=\vec{f}(t)$
- How can we think of a plane as a set, of points determined by a point and a vector? En' of plus; $\rceil \vec{n} \cdot\left(\vec{p}-\vec{p}_{0}\right)=0$
$\rightarrow$ • How do we find the equation of a plane through three given non-collinear points?
10.1: Limits
$n_{n}$ is normal vector
- What do we mean by the limit of a function $f(x, y)$ of two variables at a point $(a, b)$
- What techniques can we use to show that a function of two variables does not have a limit at a point $(a, b)$
Ides: Shows that the limit allays two dict paths disagree.
- What does it mean for a function $f(x, y)$ of two variables to be continuous at a point?
$\rightarrow$ 10.2: First-order partials
: How are the first-order partial derivatives of a function $f(x, y)$ of the independent variables $x$ and $y$ defined?
- Given a function $f$ of the independent variables $x$ and $y$, what do the firstorder partial derivatives $f_{x}$ and $f_{y}$ tell us about $f_{\text {? }}$ ? flairauf's Thevem! fxy $f_{x y}$ if $f_{x y}$, fyx are Ck
- Given a function $f$ of two independent variables $x$ and $y$, how are the secondorder partial derivatives of $f$ defined?
- What do the second-order partial derivatives $f_{x x}, f_{y y}, f_{z x}$, and $f_{\not / x}$ of a function $f$ tell us about the function's behavior?
10.4: Linearization: Tangent plane and differentials
- What does it mean for a function of two variables to be locally linear at a point?
- How do we find the equation of the plane tangent to a locally linear function at a point?
- What is the differential of a multivariable function of two variables and what are its uses?
10.5: Chain Rule
- What is the Chain Rule and how do we use it to find a derivative?
- How can we use a tree diagram to guide us in applying the Chain Rule?
10.6: Gradient and Directional Derivatives
- The partial derivatives of a function $f(x, y)$ tell us the rate of change of $f(x, y)$ in the direction of the coordinate axes. How can we measure the rate



## Exam 1 Outline (Important Concepts/Formulas)

- Slice of a function
- Level set / Contours
- Scalar vs Vector
- Vector addition, multiplication of a vector by a scalar
- Norm = Magnitude = Length of a vector
- Dot product
- Dot product (cosine version)
- Cross Product (determinant form)
- Cross Product (sine version)
- Parallel and Perpendicular Vectors
- Equation of a line in 3D given two points
- Equation of a plane given normal vector and a point
- Three-point method of finding planes (aka the cross product method)
- Limits of functions of two variables
- Finding a limit along a given curve
- Finding $f_{x}(a, b)$ and $f_{y}(a, b)$ using limit definition
- Finding partial derivatives algebraically
- Interpretations of first-order partials in terms of increasing/decreasing
- Computing second-order partials
- Clairaut's Theorem on the symmetry of mixed secondorder partials.
- Interpretation of second-order partials
- Tangent plane and the Linearization of a function
- Differential of a function
- Compute new value of a function given old value and information about the differential
- Tree diagrams and the chain rule
- Use the chain rule to write down a derivative
- Directional derivatives: definition and interpretation
- Gradient: compute, plot, use
- Gradient and directional derivative and how they're related
- Critical points: definition, how to find
- Types of critical points, how to classify them
- Second derivative test, discriminant

You may use your notes on this exit ticket. Be sure to show work and/or explain your reasoning.

1. A car rental company charges a one-time application fee of 30 dollars, 50 dollars per day, and 0.11 dollars per mile for its cars.
(a) Write a formula for the cost, $C$, of renting a car as a function $C=f(d, m)$ of the number of days $d$ and the number of miles driven $m$.
(b) Interpret the statement $f(4,870)=\$ 365.70$ in the context of this problem, using at least one complete sentence.
$\qquad$
You may use your notes on this exit ticket. Be sure to show work and/or explain your reasoning.
2. Let $\overrightarrow{\mathbf{u}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{v}}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+1 \hat{\mathbf{k}}$. Find the following:
(a) $\|\overrightarrow{\mathbf{u}}\|$
(b) $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}$
(c) $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$

You may use your notes on this exit ticket. Be sure to show work and/or explain your reasoning.

1. Let $f(x, y)=3 x^{2} y-2 y^{3} x$.
(a) Use the limit defintion of the partial derivative to compute $\frac{\partial f}{\partial x}(1,2)$.
(b) Compute $\frac{\partial f}{\partial y}$ algebraically (i.e. without using the limit defintion).

Exit Ticket 4
Name: $\qquad$
You may use your notes on this exit ticket. Be sure to show work and/or explain your reasoning.

1. Let $f(x, y)=3 x^{2} y-2 y^{3} x$.
(a) Compute the gradient $\vec{\nabla} f(x, y)$.
(b) Compute the directional derivative $D_{\hat{\mathbf{u}}} f(1,0)$.
