You may use your notes on this exit ticket. Be sure to show work and/or explain your reasoning.

1. A car rental company charges a one-time application fee of 30 dollars, 50 dollars per day, and 0.11 dollars per mile for its cars.
(a) Write a formula for the cost, C, of renting a car as a function $C=f(d, m)$ of the number of days d and the number of miles driven m.
(b) Interpret the statement $f(4,870)=\$ 365.70$ in the context of this problem, using at least one complete sentence.
\qquad
You may use your notes on this exit ticket. Be sure to show work and/or explain your reasoning.
2. Let $\overrightarrow{\mathbf{u}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{v}}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+1 \hat{\mathbf{k}}$. Find the following:
(a) $\|\overrightarrow{\mathbf{u}}\|$
(b) $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}$
(c) $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$

You may use your notes on this exit ticket. Be sure to show work and/or explain your reasoning.

1. Let $f(x, y)=3 x^{2} y-2 y^{3} x$.
(a) Use the limit defintion of the partial derivative to compute $\frac{\partial f}{\partial x}(1,2)$.
(b) Compute $\frac{\partial f}{\partial y}$ algebraically (i.e. without using the limit defintion).

Exit Ticket 4
Name: \qquad
You may use your notes on this exit ticket. Be sure to show work and/or explain your reasoning.

1. Let $f(x, y)=3 x^{2} y-2 y^{3} x$.
(a) Compute the gradient $\vec{\nabla} f(x, y)$.
(b) Compute the directional derivative $D_{\hat{\mathbf{u}}} f(1,0)$.
