MATH 208-FINAL EXAM

December 12, 2016
Name (Print): \qquad
Your Professor and Section (Circle Both):
S. Akesseh 002
J. DeVries 101
Y. Jin 012
A. Larios 010
K. Lee 007
A. Peterson 003
M. Rammaha 004
R. Rebarber 005
C. True 001, 006, 008, 009
A. Windle 011

INSTRUCTIONS:

- There are 8 pages of questions and this cover sheet.
- SHOW ALL YOUR WORK. Partial credit will be given only if your work is relevant and correct.
- Simplify your answers as much as possible.
- This examination is closed book. Calculators that perform symbolic manipulations such as the TI-89, TI-92 or their equivalents, are not permitted. Other calculators may be used. Turn off and put away all smart watches, phones, and any devices capable of wireless communication.

Question	Points	Score
1	16	
2	14	
3	12	
4	14	
5	14	
6	24	
7	20	
8	12	
9	12	
10	14	
11	12	
12	12	
13	12	
14	12	
Total	200	

1. [16 Points] Consider the vectors: $\vec{A}=3 \vec{i}+2 \vec{j}+\vec{k}=\langle 3,2,1\rangle, \quad \vec{B}=-2 \vec{i}+\vec{k}=\langle-2,0,1\rangle$.
a) [4 Points] Find $\cos \theta$, where $0 \leq \theta \leq \pi$ is the angle between between \vec{A} and \vec{B}.
b) [4 Points] Compute $\vec{A} \times \vec{B}$.
c) [4 Points] Find the equation (in rectangular coordinates) of the plane \mathcal{P} that contains the point $(2,-1,-1)$ and is parallel to the vectors \vec{A} and \vec{B}.
d) [4 Points] Find the area of the parallelogram determined by the vectors \vec{A} and \vec{B}.
2. [14 Points] Find and classify all critical points of the function: $f(x, y)=x^{3}-3 x y-\frac{3}{2} y^{2}+6 y$.
3. [12 Points] Find the equation of the tangent plane to the surface $\mathcal{S}: x^{2}-y+z^{2}-6=0$ at the point $(2,-1,1)$.
4. [14 Points] Use Lagrange multiplier to find the maximum and minimum values of $f(x, y, z)=$ $x+2 y+3 z ;$ subject to the constraint $g(x, y, z)=x^{2}+\frac{1}{2} y^{2}+\frac{1}{2} z^{2}-108=0$.
5. [14 Points] Consider the function $f(x, y)=x^{2} e^{y-1}$
a) [8 Points] Find $f_{\vec{u}}(2,1)$, the directional derivative of f at $(2,1)$ in the direction a unit vector \vec{u}, where \vec{u} is in the direction of: $3 \vec{i}-4 \vec{j}=\langle 3,-4\rangle$.
b) [6 Points] Find the maximum rate of change of f at the point $(2,1)$.
6. [24 Points] Let W be the solid that lies above the cone: $z=\sqrt{3} \sqrt{x^{2}+y^{2}}$, and under the sphere: $x^{2}+y^{2}+z^{2}=16$. Express, but don't evaluate, the volume of W as:
a) [12 Points] an integral in cylindrical coordinates.
b) [12 Points] an integral in spherical coordinates.
7. [20 Points] Consider the vector field $\vec{F}(x, y)=2 x e^{y} \vec{i}+\left(3 y^{2}+x^{2} e^{y}\right) \vec{j}=\left\langle 2 x e^{y}, 3 y^{2}+x^{2} e^{y}\right\rangle$.
a) [6 Points] Without finding a potential function, carefully show that \vec{F} is a conservative vector field on \mathbb{R}^{2}, i.e., \vec{F} is path-independent.
b) [8 Points] Find a potential function f so that $\vec{F}(x, y)=\nabla f(x, y)$.
c) [6 Points] Find $\int_{\mathcal{C}} \vec{F} \cdot d \vec{r}$, the work done by \vec{F} in moving an object from $(1,0)$ to $(3,1)$ on any piecewise smooth plane curve \mathcal{C}.
8. [12 Points] Find $\int_{\mathcal{C}} \vec{F} \cdot d \vec{r}$, the work done by the force field $\vec{F}(x, y, z)=y \vec{i}+3 x y \vec{j}-4 z \vec{k}=$ $\langle y, 3 x y,-4 z\rangle$ in moving an object on the line segment from $(1,0,0)$ to $(3,4,2)$ in \mathbb{R}^{3}.
9. [12 Points] Sketch the region of integration in the following integral, pass to polar coordinates and evaluate the resulting integral: $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} e^{x^{2}+y^{2}} d y d x$.
10. [14 Points] Let Ω be the solid region given by: $x^{2}+y^{2} \leq 1,0 \leq z \leq 4$. Note that the boundary of Ω is the closed cylinder \mathcal{S}, oriented outward, where \mathcal{S} consists of three surfaces: $\mathcal{S}_{1}: x^{2}+y^{2}=1,0 \leq z \leq 4, \quad \mathcal{S}_{2}: x^{2}+y^{2} \leq 1, z=0, \quad \mathcal{S}_{3}: x^{2}+y^{2} \leq 1, z=4$.
Use the divergence theorem only to find $\int_{\mathcal{S}} \vec{F} \cdot d \vec{A}$, the flux of the vector field: $\vec{F}(x, y, z)=x^{3} \vec{i}+$ $y^{3} \vec{j}+x y \vec{k}=\left\langle x^{3}, y^{3}, x y\right\rangle$ out of the closed surface \mathcal{S}. (Tip: You'll need to pass to cylindrical coordinates to evaluate the resulting integral).
11. [12 Points] Sketch the region of integration in the following integral, and reverse the order of integration. You need not evaluate the resulting integral: $\int_{0}^{1} \int_{\sqrt{y}}^{1} \cos \left(x^{3}\right) d x d y$.
12. [12 Points] Let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be the curves given by:

$$
\mathcal{C}_{1}: x=\sqrt{4-y^{2}},-2 \leq y \leq 2, \quad \mathcal{C}_{2}: x=0,-2 \leq y \leq 2,
$$

and $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$ is oriented counterclockwise. Let Ω be the region in \mathbb{R}^{2} enclosed by \mathcal{C} and $\vec{F}(x, y)=$ $\left(-y+\cos ^{6} x\right) \vec{i}+3 x \vec{j}=\left\langle-y+\cos ^{6} x, 3 x\right\rangle$. By using Green's Theorem only, find the value of the line integral: $\int_{\mathcal{C}} \vec{F} \cdot d \vec{r}$.
13. [12 Points] Let \mathcal{S} be the portion of the paraboloid $z=1-x^{2}-y^{2}, z \geq 0$, oriented upward. By directly evaluating the surface integral $\int_{\mathcal{S}} \vec{F} \cdot d \vec{A}$, find the flux of \vec{F} through \mathcal{S}, where $\vec{F}(x, y, z)=$ $x \vec{i}+y \vec{j}+z \vec{k}=\langle x, y, z\rangle$. (Hint: Pass to polar coordinates after setting up the surface integral).
14. [12 Points] Let \mathcal{C} be the curve that consists of line segments from $P(1,0,0)$ to $Q(0,1,0), Q$ to $R(0,0,2)$, and from R back to P (note that \mathcal{C} is the boundary of a triangle in the plane $2 x+2 y+z-2=0$). Use Stokes' Theorem to find, but don't evaluate, a double iterated integral in terms of x and y that gives the circulation of the vector field $\vec{F}(x, y, z)=y z \vec{i}-x z \vec{j}+z^{2} \vec{k}=\left\langle y z,-x z, z^{2}\right\rangle$ around \mathcal{C}.

