Name: \qquad
Circle the name of your instructor:

LUTZ	PETERSON	TRUE	KERIAN	TRUE	TRAGERSER	TRUE
$8: 30 \mathrm{am}$	$9: 30 \mathrm{am}$	$10: 30 \mathrm{am}$	$11: 30 \mathrm{am}$	$12: 30 \mathrm{pm}$	$12: 30 \mathrm{pm}$	$6: 30 \mathrm{pm}$

Instructions

- There are $\mathbf{1 6}$ questions on $\mathbf{9}$ pages (including this cover sheet).
- No books or other notes are allowed.
- You may use a calculator.
- Turn off all communication devices.
- Show all your work and explain your answers. Unsupported answers will receive little credit.
- If specified, use the method required by each problem. Alternate methods will not receive full credit.
- You have 2 hours to complete the exam.

Good luck !

Question	Out of	Score
1	12	
2	12	
3	12	
4	12	
5	13	
6	13	
7	12	
8	12	
9	13	
10	12	
11	13	
12	12	
13	13	
14	13	
15	14	
16	12	
TOTAL	200	

1. (12 points) Given the vectors $\vec{u}=3 \vec{i}+4 \vec{k}=<3,0,4>$ and $\vec{v}=\vec{i}+2 \vec{j}-2 \vec{k}=<1,2,-2>$.
(a) Find $\|2 \vec{u}-3 \vec{v}\|$.
(b) Find the vector that points in the same direction as \vec{u} and has length 4 .
(c) Find the area of the triangle determined by \vec{u} and \vec{v}.
2. (12 points)
(a) Find a vector normal to the surface $z^{2}-3 x^{2}+4 y^{2}=9$ at the point $(1,1,4)$.
(b) Find an equation of the plane tangent to the above surface at $(1,1,4)$.
3. (12 points) A cylindrical drill with radius 1 is used to bore a hole through the center of a sphere of radius 2. Find a triple iterated integral in spherical coordinates (don't evaluate) that gives the volume of the ring-shaped solid that remains.
4. (12 points) Find an equation for the tangent plane to the surface $z=f(x, y)=x^{2} y-3 x y^{2}$ corresponding to the point $(1,2)$.

5. (13 points)

(a) For the function $f(x, y)=x^{2}-y^{2}$, compute the directional derivative at $P=(1,2)$ in the direction from $P=(1,2)$ to $Q=(4,-2)$.
(b) What is the value of the largest directional derivative of $f(x, y)=x^{2}-y^{2}$ at the point $(1,2)$.
6. (13 points)
(a) Find the critical points of $f(x, y)=\frac{1}{3} x^{3}-16 x+3 y^{2}-2 y$.
(b) Use the Second Derivative Test to classify each of the critical points as a local maximum, local minimum, or saddle point.
7. (12 points) Given $z=x \sin y+y \sin x, x=2 t, y=1-t^{2}$, use the chain rule to find $\frac{d z}{d t}$.
8. (12 points) Given that the position vector of a particle of mass is given by

$$
\vec{r}(t)=<t^{2}-4 t, 6 t^{2}-18 t+12>
$$

Find the velocity vector, acceleration vector, and speed of the particle of mass all at time $t=1$.
9. (13 points) Sketch the region of the integration for the double integral $\int_{0}^{3} \int_{0}^{9-x^{2}} f(x, y) d y d x$ in the xy-plane. Clearly shade this region. Rewrite the integral reversing the order the integration.
10. (12 points) Use Lagrange multipliers to find the point(s) on the ellipse $\frac{x^{2}}{2}+\frac{y^{2}}{8}=1$ where the maximum and minimum values of $f(x, y)=2 x y$ occur.
11. (13 points) Let $\vec{F}(x, y)=2 x y \vec{i}+x^{2} \vec{j}=<2 x y, x^{2}>$ and let C be the line segment from $(0,1)$ to $(2,2)$.
(a) Find a parametrization of the curve C.
(b) Evaluate the line integral $\int_{C} \vec{F} \cdot d \vec{r}$.
12. (12 points) Find the upward flux of the vector field

$$
\vec{F}(x, y, z)=\left(z-x^{2}\right) \vec{i}+(y+1) \vec{j}+2 y \vec{k}=<z-x^{2}, y+1,2 y>
$$

through the part of the surface $z=f(x, y)=x^{2}+y^{2}$ above the rectangle $0 \leq x \leq 2,0 \leq y \leq 1$.
13. (13 points) Let Q be the region bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$ and bounded above by the sphere $x^{2}+y^{2}+z^{2}=4$. Let S be the bounding surface of the region Q. Use the Diverence Theorem to find the outward flux of the vector field $\vec{F}=\left(x z^{2}\right) \vec{i}+\frac{1}{3} y^{3} \vec{j}+\left(x^{2} z+2 x y\right) \vec{k}=<x z^{2}, \frac{1}{3} y^{3}, x^{2} z+2 x y>$ through the surface S.
14. (13 points) Use Stoke's Theorem to find a double integral that gives the circulation of the vector field $\vec{F}(x, y, z)=z^{2} \vec{i}+3 x y \vec{j}+5 y z \vec{k}=<z^{2}, 3 x y, 5 y z>$ around the triangle from $P=(2,0,0)$, to $Q=(0,2,0)$, to $R=(0,0,4)$ and back to P (this triangle lies in the plane $2 x+2 y+z=4$). Do not evaluate the integral.
15. (14 points) Let $\vec{F}(x, y)=(y+2 x+1) \vec{i}+x \vec{j}=<y+2 x+1, x>$ be given.
(a) First show that this vector field is a conservative vector field.
(b) Then find a potential function for the given vector field.
(c) Let C be the quarter of the circle $x^{2}+y^{2}=1$ in the first quadrant from $(1,0)$ to $(0,1)$. Use your above answers to evaluate the line integral $\int_{C} \vec{F} \cdot d \vec{r}$.
16. (12 points) Let $\vec{F}(x, y)=x y^{2} \vec{i}+2 x^{2} y \vec{j}=<x y^{2}, 2 x^{2} y>$. Use Green's Theorem to evaluate the line integral $\int_{C} \vec{F} \cdot d \vec{r}$, where C is the triangle with vertices at $(0,0),(2,0)$, and $(0,2)$ oriented in the clockwise sense.

