\square

Name (write clearly)

NU ID number

Circle the name and time of your lecture:
Norwood 8:30 Norwood 9:30 Schafhauser 11:30 Rebarber 12:30 Burns 6:30 Yang 208H.

Instructions

- There are $\mathbf{1 5}$ questions on $\mathbf{1 7}$ pages (including this cover sheet and the formula sheet on the second page).
- No books, notes or calculator are allowed.
- Turn off all communication devices.
- Show all your work and explain your answers. Unsupported answers will receive little credit.
- If specified, use the method required by each problem. Alternate methods will not receive full credit.
- In multi-part problems, the parts might not be worth the same number of points.
- You have 2 hours to complete the exam.

Good luck !

Question	Out of	Score
1	10	
2	10	
3	12	
4	12	
5	12	
6	12	
7	16	
8	12	
9	18	
10	16	
11	13	
12	12	
13	14	
14	17	
15	14	
TOTAL	200	

The formulas on the next page might or might not be useful:
\square

$$
\begin{array}{cl}
x=\rho \sin \phi \cos \theta, & y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi, \quad d V=\rho^{2} \sin \phi d \rho d \phi d \theta \\
& \int_{C} \vec{F} \cdot d \vec{r}= \pm \iint \operatorname{curl}(\vec{F}) \cdot\left(\vec{r}_{s} \times \vec{r}_{t}\right) d s d t
\end{array}
$$

The flux of \vec{F} over the boundary of W is equal to the integral of the divergence of \vec{F} over W.

1. (10 points)
(a) Find a normal vector to the plane containing the points $(0,1,3),(-2,0,-1)$ and $(1,1,0)$.
(b) Find an equation for the plane in part (a).
\square
2. (10 points) Match each vector field formula with the corresponding graph.

3. (12 points)
(a) Find a number α such that $2 \vec{i}+\vec{j}+3 \vec{k}$ is perpendicular to $\alpha \vec{i}+2 \vec{j}-6 \vec{k}$.
(b) Find the cosine of the angle between the two vectors $\vec{u}=-2 \vec{i}+3 \vec{j}+6 \vec{k}$ and $\vec{v}=\vec{i}+2 \vec{j}-\vec{k}$.
4. (12 points)
(a) Find the directional derivative of $f(x, y, z)=z e^{y}+x^{2}$ at $P=(5,0,-1)$ in the direction from the point P to the point $Q=(4,1,2)$.
(b) What is the direction of maximum rate of change of f at P ? Give the direction as a unit vector.
5. (12 points)
(a) Draw the region of integration for

$$
\int_{1}^{e^{2}} \int_{0}^{\ln y} d x d y
$$

(b) Switch the order of integration for this integral. Do not evaluate.
6. (12 points)
(a) Find the local linearization of $f(x, y)=\left(x y^{2}+7\right)^{3 / 2}$ at the point $(2,1)$.
(b) For $f(x, y)$ in part (a), use the local linearization to approximate $f(2.05, .9)$. Leave your answer as a number, but there is no need to simplify it.
7. (16 points) (a) Find both critical points of $f(x, y)=3 x y-x^{3}-y^{3}+3$.
(b) Use the Second Derivative Test to classify each of the critical point(s) as a local maximum, local minimum, or saddle point.
8. (12 points) Use Green's Theorem to evaluate the line integral

$$
\int_{C}(2 x y-3) d x+\left(x^{2}+x+y\right) d y
$$

where C is the close curve consisting of the line segment from $(0,0)$ to $(2,0)$, followed by the line segment from $(2,0)$ to $(0,3)$, followed by the line segment from $(0,3)$ back to $(0,0)$.
9. (18 points) Let W be the part of the solid ball $x^{2}+y^{2}+z^{2} \leq 16$ which is in the octant with

$$
\{x \geq 0, y \leq 0, z \leq 0\}
$$

For the following problems, you only get credit for providing the integrals.
(a) Find an integral for the volume of W in spherical coordinates. Do not evaluate.
(b) Find an integral for the volume of W in cartesian coordinates. Do not evaluate.
10. (16 points) Let S be that part of the surface $z=x y+5$ which is above the square

$$
\{0 \leq x \leq 1, \quad 1 \leq y \leq 2\}
$$

in the (x, y) plane. Assume S is oriented with normals that have a positive \vec{k} component. Find the flux of the vector field $\vec{F}(x, y, z)=\langle x, 0, x y+1\rangle$ through S.
11. (13 points) Use Lagrange multipliers to find the maximum and minimum values (and the points (x, y) where they are taken on) of $f(x, y)=x+3 y$ subject to the constraint $x^{2}+y^{2}=4000$.
12. (12 points) Let $\vec{F}(x, y, z)=-3 y \vec{i}+x \vec{j}$ and let C be that part of the curve $y=x^{2}$ from $(-1,1)$ to $(1,1)$. Evaluate the line integral $\int_{C} \vec{F} \cdot d \vec{r}$.
13. (14 points) Let R be the solid region bounded below by $z=x^{2}+y^{2}$ and above by $z=32-\left(x^{2}+y^{2}\right)$. Let S be the boundary surface of R. Use the Divergence Theorem to find an iterated integral, in cylindrical coordinates, for the outward flux of the vector field

$$
\vec{F}=\left(x^{3}+y^{3}\right) \vec{i}+\left(y^{3}+x z\right) \vec{j}+\left(y-x^{2} y\right) \vec{k}
$$

through the surface S. Your answer should be in terms of z, r and θ, and you should not evaluate the iterated integral.
14. (17 points) Let C be the curve $x^{2}+y^{2}=25$ in the plane $z=1$, oriented counterclockwise when viewed from above. Let $\vec{F}=\langle z, x, y\rangle$. Let S be the disk enclosed by C, that is, the surface defined by $x^{2}+y^{2} \leq 25$ in the plane $z=1$.
(a) Find parametric equations for S, with parameters s and t.
(b) Use Stokes' Theorem to find a flux integral which is equivalent to

$$
\int_{C} \vec{F} \cdot d \vec{r}
$$

Write the integral completely in terms of s and t. Do not evaluate the integral.
15. (14 points) (a) Show that this vector field is conservative:

$$
\vec{F}(x, y)=\left(\frac{2 x}{y}+2 x\right) \vec{i}+\frac{-x^{2}}{y^{2}} \vec{j} .
$$

(b) Find a potential function for the vector field in part (a).
(c) Find the work done by the force field in part (a) in moving an object from $(2,5)$ along a curve C to $(2,1)$.

