MATH 208, EXAM 3

SECTION 150

Name: ______ NUID: _____

Instructions.

- You should have 8 pages on which 6 problems are printed.
- You have 50 minutes: the exam will begin on the half-hour and end promptly, 50 minutes later.
- Show all work unless otherwise specified. What you write on the page must convince me that you understand the problem and its solution.
- Read each problem carefully.
- You do not need to simplify your answers, unless the instructions for a problem indicate otherwise.
- You are not allowed a calculator, notes, textbooks, or access to any electronic devices.
- Don't panic. Good luck!

Date: Fall 2022.

Here are some things you might find useful.

$$x = \rho \sin \phi \cos \theta$$
$$y = \rho \sin \phi \sin \theta$$
$$z = \rho \cos \phi$$

$$dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

Math 208, Exam 3

Initials:

Problem 1 (2 + 8 points). Consider the spiral curve parametrized by

 $\vec{r}(t) = \langle 3t, 4\sin t, 4\cos t \rangle$ for $-1 \le t \le 3$.

(a) Which of the following correctly describes the line tangent to this curve at the point (0, 0, 4)? (There is exactly one correct answer.)

3x + 4y + z = 0 $x = 3t, y = 4 \sin t, z = 4 \cos t$ x = 3t, y = 4t, z = 4 $\vec{L}(t) = \langle 0, 0, 0 \rangle + t \langle 0, 0, 4 \rangle$

(b) Find the arclength of the spiral curve.

Initials:

Problem 2 (8 + 12 points). Let *S* be the portion of the cylinder $x^2 + y^2 = 4$ lying above the *xy*-plane and below the plane z = y.

(a) Give a parametrization of the surface *S*. Be sure to give bounds on your parameters.

(b) Express the surface area of *S* as a double integral. **Do not evaluate your integral.**

Math 208, Exam 3Initials:Problem 3 (15 + 5 points).Consider the following vector field in three dimensions.

$$\vec{F} = \left\langle e^{-2y}, 3z - 2xe^{-2y}, 3y \right\rangle$$

(a) Clearly state what it means for *g* to be a potential function for \vec{F} , and then find such a potential function *g*. (Show your work.)

(b) Compute the line integral $\int_C \vec{F} \cdot d\vec{r}$ over any path *C* from $(1, 0, \pi)$ to (0, 1, 2). Briefly explain why your answer depends only on the endpoints of *C* and not on its behavior between the endpoints. Initials:

Problem 4 (10 points). Consider the rectangle *R* in the plane with vertices (2, -1), (5, -1), (5, 3), and (2, 3) and the vector field $\vec{F} = \langle 3y - e^{x^2}, e^{x^2 + y^2} \rangle$. Use Green's Theorem to express the circulation of \vec{F} around the boundary of *R* (oriented counter-clockwise) as a double integral. **Do not evaluate your integral.**

Math 208, Exam 3	Initials:	
Problem 5 (20 points). Compute the line integral $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = \langle -2e^{y}, -xz, xy \rangle$		
and <i>C</i> is the straight-line path from $(1, 0, 0)$ to $(0, 2, 3)$.		

Math 208, Exam 3

Initials:

Problem 6 (20 points). Compute the flux of the vector field $\vec{F} = \langle -x, 2y, 3z \rangle$ over the portion of the plane 3x + 3z = 10 that lies above the unit square $0 \le x \le 1, 0 \le y \le 1$, oriented with upward-pointing normal vector.