MATH 208, EXAM 3

SECTION 150

Solutions NUID:

Instructions.

- You should have 8 pages on which 6 problems are printed.
- You have 50 minutes: the exam will begin on the half-hour and end promptly, 50 minutes later.
- Show all work unless otherwise specified. What you write on the page must convince me that you understand the problem and its solution.
- Read each problem carefully.
- You do not need to simplify your answers, unless the instructions for a problem indicate otherwise.
- You are not allowed a calculator, notes, textbooks, or access to any electronic devices.
- Don’t panic. Good luck!

Here are some things you might find useful.

$$
\begin{aligned}
x & =\rho \sin \phi \cos \theta \\
y & =\rho \sin \phi \sin \theta \\
z & =\rho \cos \phi \\
d V & =\rho^{2} \sin \phi d \rho d \phi d \theta
\end{aligned}
$$

\square
Problem 1 ($2+8$ points). Consider the spiral curve parametrized by

$$
\vec{r}(t)=\langle 3 t, 4 \sin t, 4 \cos t\rangle \quad \text { for } \quad-1 \leq t \leq 3 .
$$

(a) Which of the following correctly describes the line tangent to this curve at the point $(0,0,4)$? (There is exactly one correct answer.)

$$
3 x+4 y+z=0 \longleftarrow \text { not even a line! }
$$

$$
x=3 t, y=4 \sin t, z=4 \cos t
$$

ETh $x=3 t, y=4 t, z=4$

$$
\vec{L}(t)=\langle 0,0,0\rangle+t\langle 0,0,4\rangle
$$

(b) Find the arclength of the spiral curve.

Integrate speed:

$$
\begin{gathered}
\langle 0,0,4\rangle+t\langle 3,40\rangle \\
=\langle 3 t, 4 t, 4\rangle
\end{gathered}
$$

$$
|\vec{v}(t)|=\sqrt{3^{2}+(4 \cos t)^{2}+(-4 \sin t)^{2}}
$$

$$
=\sqrt{9+16}=5 .
$$

$$
\int_{t=-1}^{3} 5 d t=20
$$

Initials: \square Math 208, Exam 3
Problem $2\left(8+12\right.$ points). Let S be the portion of the cylinder $x^{2}+y^{2}=4$ lying above the $x y$-plane and below the plane $z=y \cdot \operatorname{Ir} \sin \theta$ $r=2$
(a) Give a parametrization of the surface S. Be sure to give bounds on your parameters.

$$
\begin{aligned}
\vec{r}(\theta, z) & =\langle 2 \cos \theta, 2 \sin \theta, z\rangle \\
0 & \leqslant \theta \leqslant \pi \\
0 & \leqslant z \leqslant 2 \sin \theta
\end{aligned}
$$

(b) Express the surface area of S as a double integral. Do not evaluate your integral.

$$
\begin{aligned}
\vec{r}_{\theta} \times \vec{r}_{z} & =\langle-2 \sin \theta, 2 \cos \theta, 0\rangle \times\langle 0,0,1\rangle \\
& =\langle 2 \cos \theta, 2 \sin \theta, 0\rangle
\end{aligned}
$$

$$
\text { "speed I" }=\left|\vec{r}_{t} \times \vec{r}_{z}\right|=\sqrt{(\cos \theta)^{2}+(2 \operatorname{sis} \theta)^{2}}=2
$$

\square
\square
Problem 3 ($15+5$ points). Consider the following vector field in three dimensions.

$$
\vec{F}=\left\langle e^{-2 y}, 3 z-2 x e^{-2 y}, 3 y\right\rangle
$$

(a). Clearly state what it means for g to be a potential function for \vec{F}, and then find such a potential function g. (Show your work.)

$$
\begin{aligned}
& \Rightarrow \text { Means } \nabla g=\vec{F} \\
& g x=e^{-2 y} \Rightarrow g(x, y, z)=x e^{-2 y}+C(y, z)
\end{aligned}
$$

$$
\text { So } 3 z-2 x e^{-2 y}=g y=-2 x e^{-2 y}+C_{y}
$$

$$
S_{0} \quad C y=3 z \quad \Rightarrow \quad C(y, z)=3 y z+D(z)
$$

$$
g(x, y, z)=x e^{-2 y}+3 y z{ }^{3} y=g z=3 y+D^{\prime}(z) \Rightarrow D^{\prime}(z)=0 .
$$

(b) Compute the line integral $\int_{C} \vec{F} \cdot d \vec{r}$ over any path C from $(1,0, \pi)$ to $(0,1,2)$. Briefly explain why your answer depends only on the endpoints of C and not on its behavior between the endpoints.
By the Furdanuatal The af Callus for Lire Ertecals,

$$
\begin{aligned}
\int_{c} \vec{F} \cdot d \vec{r}=\int_{c} \nabla_{g} \cdot d \vec{r} & =g(0,1,2)-g(1,0, \pi) \\
& =6-1=5
\end{aligned}
$$

Initials: \square Math 208, Exam 3
Problem 4 (10 points). Consider the rectangle R in the plane with vertices $(2,-1)$, $(5,-1),(5,3)$, and $(2,3)$ and the vector field $\vec{F}=\left\langle 3 y-e^{x^{2}}, e^{x^{2}+y^{2}}\right\rangle$. Use Green's Theorem to express the circulation of \vec{F} around the boundary of R (oriented counterclockwise) as a double integral. Do not evaluate your integral.

$$
\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}=2 x e^{x^{2}+y^{2}}-3
$$

$$
\begin{aligned}
\oint_{E \vec{F}} \vec{F} \cdot d \vec{x} & =\iint_{x} \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y} d A \\
& =\int_{x=2}^{5} \int_{y=-1}^{3}\left(2 x e^{x^{2}+y^{2}}-3\right) d y d x
\end{aligned}
$$

\square
Problem 5 (20 points). Compute the line integral $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}=\left\langle-2 e^{y},-x z, x y\right\rangle$ and C is the straight-line path from $(1,0,0)$ to $(0,2,3)$.

Parametrize: $\vec{r}(t)=\langle 1,0,0\rangle+t\langle-1,2,3\rangle$

$$
\begin{aligned}
& =\langle 1-t, 2 t, 3 t\rangle, \quad 0 \leq t \leq 1 \\
\vec{r}^{\prime}(t) & =\langle-1,2,3\rangle \\
\vec{F}(\vec{r}(t)) \cdot r^{\prime}(t) & =\left\langle 2 e^{2 t},-(1-t) \cdot 3 t,(1-t) 2 t\right\rangle
\end{aligned}
$$

$$
\cdot\langle-1,2,3\rangle
$$

$$
=2 e^{2 t}-2(y-t) 3 t+3(1-x) 2 t
$$

$$
=2 e^{2 t}
$$

$$
\int_{c} \vec{F} \cdot d \vec{r}=\int_{t=0}^{1} 2 e^{2 t} d t=\left[e^{2 t}\right]_{0}^{1}=e^{2}-1
$$

\square
Problem 6 (20 points). Compute the flux of the vector field $\vec{F}=\langle-x, 2 y, 3 z\rangle$ over the portion of the plane $3 x+3 z=10$ that lies above the unit square $0 \leq x \leq 1,0 \leq y \leq 1$, oriented with upward-pointing normal vector.
Parametrize using $x=s, y=t$, so $z=\frac{1}{3}(10-3 x)=\frac{1}{3}(10-3 s)$.

$$
\begin{aligned}
& \vec{r}(s, t)=\left\langle s, t, \frac{1}{3}(10-3 s)\right\rangle, \quad \begin{array}{r}
0 \leq s \leq 1 \\
0 \leq t \leq 1
\end{array} \\
& \overrightarrow{r_{s}} \times \vec{r}_{t}=\langle 1,0,-1\rangle \times\langle 0,1,0\rangle \\
&=\langle 1,0,1\rangle . \\
& \vec{F}(\vec{r}(s, t)) \cdot\left(\overrightarrow{r_{s}} \times \overrightarrow{r_{t}}\right)=\left\langle-s, 2 t, 3\left(\frac{1}{3}(10-3 s)\right)\right\rangle \\
&=-\langle 1,0,1\rangle \\
& F \operatorname{lux}= \int_{s=0}^{1} \int_{t=0}^{1} 10-4 s d t d s \\
&=\int_{s=0}^{1} 10-4 s d s=\left[10 s-2 s^{2}\right]_{0}^{1}=8 s=10-4 s .
\end{aligned}
$$

