MATH 208, EXAM 2

SECTION 250

Name: ______ NUID: _____

Instructions.

- You should have 8 pages on which 7 problems are printed.
- You have 50 minutes: the exam will begin on the half hour and end promptly, 50 minutes later.
- Show all work unless otherwise specified. What you write on the page must convince me that you understand the problem and its solution.
- Read each problem carefully.
- You do not need to simplify your answers, unless the instructions for a problem indicate otherwise.
- You are not allowed a calculator, notes, textbooks, or access to any electronic devices.
- Don't panic. Good luck!

Date: Fall 2022.

Here are some things you might find useful.

$$x = \rho \sin \phi \cos \theta$$
$$y = \rho \sin \phi \sin \theta$$
$$z = \rho \cos \phi$$

$$dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

Math 208, Exam 2

Initials:

Problem 1 (8 points). Values of f(x, y) are shown in a table below. Let *R* be the rectangle $[2, 2.6] \times [5, 5.2]$, i.e., all points (x, y) satisfying $2 \le x \le 2.6$ and $5 \le y \le 5.2$. Use the table of values to produce a reasonable *underestimate* for the integral $\iint_R f(x, y) dA$. (**Do not simplify your answer.**)

	<i>x</i> = 2	<i>x</i> = 2.2	<i>x</i> = 2.4	<i>x</i> = 2.6
<i>y</i> = 5	4	3	-1	-5
<i>y</i> = 5.1	0	2	1	3
<i>y</i> = 5.2	-1	-2	-3	-4

Problem 2 (8 points). A biologist is studying a population of microorganisms in a circular petri dish of radius 5cm. Her model predicts that the population density of microorganisms should be $\frac{C}{e^r}$ individuals/cm² at distance *r* from the center of the dish, for some constant *C*. Set up (**but do not solve**) an integral giving the total population of microorganisms in the dish.

Initials:

Math 208, Exam 2

Problem 3 (20 points). Use the method of Lagrange multipliers to find the maximum value taken by the function $f(x, y, z) = 3yz - x^2$ on the plane -2x + 6y + 6z = 11.

Maximum: f(, , ,) = .

Math 208, Exam 2	Initials:	
Problem 4 (20 points). A thick tube is bout the plane $z = 2x + 5$, and between the two cy	nded below by the xy -plan vlinders $x^2 + y^2 = 4$ and x^2 -	e, above by $y^2 = 1$.

(a) Set up an integral in cylindrical coordinates to compute the volume of this region.

(b) Evaluate your integral.

Math 208, Exam 2

Problem 5 (6 + 6 + 6 points). For each of the following regions *W*, set up (**but do not evaluate**) an iterated integral in spherical coordinates giving $\iiint_W z \, dV$. (The integrand is the function f(x, y, z) = z.)

(a) W is the region between the two spheres $x^2 + y^2 + z^2 = 3$ and $x^2 + y^2 + z^2 = 16$.

(b) W is the set of points (x, y, z) lying between the two spheres $x^2 + y^2 + z^2 = 3$ and $x^2 + y^2 + z^2 = 16$ and satisfying $y \ge 0, z \le 0$.

(c) *W* is the set of points (x, y, z) lying between the cone $z = \sqrt{x^2 + y^2}$ and the sphere $x^2 + y^2 + z^2 = 16$.

Initials:

Math 208, Exam 2 Initials: **Problem 6** (6 + 6 points). Let *T* be the tetrahedral region bounded by the *xy*-plane, the *xz*-plane, the *yz*-plane, and the plane x + 3y + 5z = 15. Express the integral

 $\iiint_T f \, dV$ as an iterated integral using the two requested orders of integration.

(a)

 $\int_{x=} \int_{y=} \int_{z=} \int_{z=} f(x, y, z) \, dz \, dy \, dx$

(b)

 $\int_{z=} \int_{x=} \int_{y=} f(x, y, z) \, dy \, dx \, dz$

Initials:

Problem 7 (7 + 7 points). The two parts are independent.

(a) Let *L* be the line that is the intersection of the planes z = 3 and x = y. Notice that the two points (5, 5, 3) and (0, 0, 3) each lie on *L*. Give a parametrization $\vec{r}(t)$ of *L* satisfying $\vec{r}(0) = \langle 5, 5, 3 \rangle$ and $\vec{r}(2) = \langle 0, 0, 3 \rangle$.

(For partial credit, give any correct parametrization of *L*.)

(b) Give a vector-valued function that parametrizes the circle of radius 5 centered at (-3, 4) in a clockwise direction.

(For partial credit, give any correct parametrization of this circle.)