MATH 208, EXAM 2

SECTION 250

Name: \qquad NUID: \qquad

Instructions.

- You should have 8 pages on which 7 problems are printed.
- You have 50 minutes: the exam will begin on the half hour and end promptly, 50 minutes later.
- Show all work unless otherwise specified. What you write on the page must convince me that you understand the problem and its solution.
- Read each problem carefully.
- You do not need to simplify your answers, unless the instructions for a problem indicate otherwise.
- You are not allowed a calculator, notes, textbooks, or access to any electronic devices.
- Don’t panic. Good luck!

Here are some things you might find useful.

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta \\
& z=\rho \cos \phi
\end{aligned}
$$

$$
d V=\rho^{2} \sin \phi d \rho d \phi d \theta
$$

Problem 1 (8 points). Values of $f(x, y)$ are shown in a table below. Let R be the rectangle $[2,2.6] \times[5,5.2]$, i.e., all points (x, y) satisfying $2 \leq x \leq 2.6$ and $5 \leq y \leq$ 5.2. Use the table of values to produce a reasonable underestimate for the integral $\iint_{R} f(x, y) d A$. (Do not simplify your answer.)

	$x=2$	$x=2.2$	$x=2.4$	$x=2.6$
$y=5$	4	3	-1	-5
$y=5.1$	0	2	1	3
$y=5.2$	-1	-2	-3	-4

Problem 2 (8 points). A biologist is studying a population of microorganisms in a circular petri dish of radius 5 cm . Her model predicts that the population density of microorganisms should be $\frac{C}{e^{r}}$ individuals $/ \mathrm{cm}^{2}$ at distance r from the center of the dish, for some constant C. Set up (but do not solve) an integral giving the total population of microorganisms in the dish.

Initials:
Problem 3 (20 points). Use the method of Lagrange multipliers to find the maximum value taken by the function $f(x, y, z)=3 y z-x^{2}$ on the plane $-2 x+6 y+6 z=11$.

Maximum:

Math 208, Exam 2 Initials:

Problem 4 (20 points). A thick tube is bounded below by the $x y$-plane, above by the plane $z=2 x+5$, and between the two cylinders $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=1$.
(a) Set up an integral in cylindrical coordinates to compute the volume of this region.
(b) Evaluate your integral.

Initials:
Problem 5 ($6+6+6$ points). For each of the following regions W, set up (but do not evaluate) an iterated integral in spherical coordinates giving $\iiint_{W} z d V$. (The integrand is the function $f(x, y, z)=z$.)
(a) W is the region between the two spheres $x^{2}+y^{2}+z^{2}=3$ and $x^{2}+y^{2}+z^{2}=16$.
(b) W is the set of points (x, y, z) lying between the two spheres $x^{2}+y^{2}+z^{2}=3$ and $x^{2}+y^{2}+z^{2}=16$ and satisfying $y \geq 0, z \leq 0$.
(c) W is the set of points (x, y, z) lying between the cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=16$.

Problem 6 ($6+6$ points). Let T be the tetrahedral region bounded by the $x y$-plane, the $x z$-plane, the $y z$-plane, and the plane $x+3 y+5 z=15$. Express the integral $\iiint_{T} f d V$ as an iterated integral using the two requested orders of integration.
(a)

$$
\int_{x=} \quad \int_{y=} \quad f(x, y, z) d z d y d x
$$

(b)

$$
\int_{z=} \quad \int_{x=} \quad \int_{y=} f(x, y, z) d y d x d z
$$

Initials:
Problem 7 (7 +7 points). The two parts are independent.
(a) Let L be the line that is the intersection of the planes $z=3$ and $x=y$. Notice that the two points $(5,5,3)$ and $(0,0,3)$ each lie on L. Give a parametrization $\vec{r}(t)$ of L satisfying $\vec{r}(0)=\langle 5,5,3\rangle$ and $\vec{r}(2)=\langle 0,0,3\rangle$.
(For partial credit, give any correct parametrization of L.)
(b) Give a vector-valued function that parametrizes the circle of radius 5 centered at $(-3,4)$ in a clockwise direction.
(For partial credit, give any correct parametrization of this circle.)

