MATH 208, EXAM 2

SECTION 250

NUID:

Instructions.

- You should have 8 pages on which 7 problems are printed.
- You have 50 minutes: the exam will begin on the half hour and end promptly, 50 minutes later.
- Show all work unless otherwise specified. What you write on the page must convince me that you understand the problem and its solution.
- Read each problem carefully.
- You do not need to simplify your answers, unless the instructions for a problem indicate otherwise.
- You are not allowed a calculator, notes, textbooks, or access to any electronic devices.
- Don't panic. Good luck!

Here are some things you might find useful.

$$
\begin{aligned}
x & =\rho \sin \phi \cos \theta \\
y & =\rho \sin \phi \sin \theta \\
z & =\rho \cos \phi \\
d V & =\rho^{2} \sin \phi d \rho d \phi d \theta
\end{aligned}
$$

\square
Problem 1 (8 points). Values of $f(x, y)$ are shown in a table below. Let R be the rectangle $[2,2.6] \times[5,5.2]$, i.e., all points (x, y) satisfying $2 \leq x \leq 2.6$ and $5 \leq y \leq$ 5.2. Use the table of values to produce a reasonable underestimate for the integral $\iint_{R} f(x, y) d A$. (Do not simplify your answer.)

	$x=2$	$x=2.2$	$x=2.4$	$x=2.6$
$y=5$	4	3	-1	-5
$y=5.1$	0	2	1	3
$y=5.2$	-1	-2	-3	-4

Take minimum value in each \& 60.2×0.1 bees

$$
\begin{aligned}
& 0.2 \cdot 0.1(0+2+-1+-3+-5+-4) \\
& (=0.0 .15=0.3) .
\end{aligned}
$$

Problem 2 (8 points). A biologist is studying a population of microorganisms in a circular peri dish of radius 5 cm . Her model predicts that the population density of microorganisms should be $\frac{C}{e^{r}}$ individuals $/ \mathrm{cm}^{2}$ at distance r from the center of the dish, for some constant C. Set up (but do not solve) an integral giving the total population of microorganisms in the dish.

$$
\int_{\theta=0}^{2 \pi} \int_{r=0}^{5} \frac{C}{e^{r}} r d r d \theta
$$

Initials: \square
Problem 3 (20 points). Use the method of Lagrange multipliers to find the maximum value taken by the function $f(x, y, z)=3 y z-x^{2}$ on the plane $-2 x+6 y+6 z=11$.

$$
\left.\begin{array}{l}
\nabla f=\lambda \nabla_{g}: \\
-2 x=f_{x}=\lambda g_{x}=\lambda(-2) \\
3 z=f_{y}=\lambda g_{y}=\lambda(6) \\
3 y=f_{z}=\lambda g_{x}=\lambda(6)
\end{array}\right\} \Rightarrow
$$

Pug into constraint equation:

$$
-2(\lambda)+6(2 \lambda)+6(2 \lambda)=11 \Rightarrow \lambda=\frac{1}{2}
$$

So $x=\frac{1}{2}, y=1, z=1$.

Maximum: \square $, 1)=11 / 4$.
\square
Problem 4 (20 points). A thick tube is bounded below by the $x y$-plane, above by the plane $z=2 x+5$, and between the two cylinders $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=1 . \quad r=1$
(a) Set up an integral in cylindrical coordinates topompute the volume of this region.

$$
\int_{\theta=0}^{2 \pi} \int_{r=1}^{2} \int_{z=0}^{2 r \cos \theta+5} \frac{\cos }{}_{r}^{r} d z d r d \theta
$$

"correction factor for
(b) Evaluate your integral.
cylindrical

$$
\begin{aligned}
& =\int_{\theta=0}^{2 \pi} \int_{r=1}^{2} r(2 \cos \theta+5-0) d r d \theta \\
& =\int_{\theta=0}^{2 \pi}\left[\frac{2 r^{3}}{3} \cos \theta+\frac{5 r^{2}}{2}\right]_{r=1}^{2} d \theta \\
& =\int_{\theta=0}^{2 \pi}\left(\frac{14}{3} \cos \theta+\frac{15}{2}\right) d \theta \\
& =\left[\frac{14}{3} \sin \theta+\frac{15}{2} \theta\right]_{\theta=0}^{2 \pi}=\frac{14}{3} \sin _{2 \pi}^{0} 2 \pi+15 \pi \\
& =15 \pi
\end{aligned}
$$

Initials: \square
Problem 5 ($6+6+6$ points). For each of the following regions W, set up (but do not evaluate) an iterated integral in spherical coordinates giving $\iiint_{W} z d V$. (The integrand is the function $f(x, y, z)=z$.)
(a) W is the region between the two spheres $x^{2}+y^{2}+z^{2}=3$ and $x^{2}+y^{2}+z^{2}=16$.

$$
\int_{\theta=0}^{2=c \cos \phi} \quad \rho=\sqrt{3} \quad \rho=4
$$

(b) W is the set of points (x, y, z) lying between the two spheres $x^{2}+y^{2}+z^{2}=3$ and $x^{2}+y^{2}+z^{2}=16$ and satisfying $y \geq 0, z \leq 0$.

Below xy-plane:

$$
\frac{\pi}{2} \leq \phi \leq \pi
$$

$$
\phi=\frac{\pi}{4}
$$

(c) W is the set of points (x, y, z) lying between the cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=16$. ice cream cone!

Problem 6 ($6+6$ points). Let T be the tetrahedral region bounded by the $x y$-plane, the $x z$-plane, the $y z$-plane, and the plane $x+3 y+5 z=15$. Express the integral $\iiint_{T} f d V$ as an iterated integral using the two requested orders of integration.
(a)

(b)

Initials: \square

$$
\overrightarrow{P Q}=\langle-5,-5,0\rangle
$$

Math 208, Exam 2
Problem 7 (7+7 points). The two parts are independent.
(a) Let L be the line that is intersection of the planes $z=3$ and $x=y$. Notice that the two points $(5,5,3)$ and $(0,0,3)$ each lie on L. Give a parametrization $\vec{r}(t)$ of L satisfying $\vec{r}(0)=\langle 5,5,3\rangle$ and $\vec{r}(2)=\langle 0,0,3\rangle$.
(For partial credit, give any correct parametrization of L.)
"Standard" parametrization:

$$
\langle 5,5,3\rangle+t\langle-5,-5,0\rangle .
$$

Desired paranctrization:

$$
\vec{r}(t)=\langle 5,5,3\rangle+\frac{t}{2}\langle-5,-5,0\rangle, \quad-\infty<t<\infty
$$

(b) Give a vector-valued function that parametrizes the circle of radius 5 centered at $(-3,4)$ in a clockwise direction.
(For partial credit, give any correct parametrization of this circle.)
${ }^{\prime}$ Standard" parametrization:

$$
\langle-3,4\rangle+5\langle\cos (t), \sin (t)\rangle,((c)) 0 \leq t \leq 2 \pi
$$

To varese orientation, change t to $-t$:

$$
\langle-3,4\rangle+5\langle\cos (-t), \sin (-t)\rangle, \quad 0 \leq t \leq 2 \pi .
$$

