MATH 208, EXAM 2

SECTION 250

)ontions Name: _ NUID: _____

Instructions.

- You should have 8 pages on which 7 problems are printed.
- You have 50 minutes: the exam will begin on the half hour and end promptly, 50 minutes later.
- Show all work unless otherwise specified. What you write on the page must convince me that you understand the problem and its solution.
- Read each problem carefully.
- You do not need to simplify your answers, unless the instructions for a problem indicate otherwise.
- You are not allowed a calculator, notes, textbooks, or access to any electronic devices.

1

• Don't panic. Good luck!

Date: Fall 2022.

Here are some things you might find useful.

$$x = \rho \sin \phi \cos \theta$$
$$y = \rho \sin \phi \sin \theta$$
$$z = \rho \cos \phi$$

$$dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

Initials:

Problem 1 (8 points). Values of f(x, y) are shown in a table below. Let *R* be the rectangle $[2, 2.6] \times [5, 5.2]$, i.e., all points (x, y) satisfying $2 \le x \le 2.6$ and $5 \le y \le 5.2$. Use the table of values to produce a reasonable *underestimate* for the integral $\iint_R f(x, y) dA$. (Do not simplify your answer.)

~		<i>x</i> = 2	<i>x</i> = 2.2	<i>x</i> = 2.4	<i>x</i> = 2.6					
	<i>y</i> = 5	4	3	(-1)	-5					
	<i>y</i> = 5.1	0	2	1	3					
	<i>y</i> = 5.2	-1	-2	_3	-4					
Take minimum value in each of $6 0.2 \times 0.1$ boxes: $0.2 \cdot 0.1 \left(0 + -2 + -1 + -3 + -5 + -4 \right)$										
	(= 0.02	15 =	0.3).						

Problem 2 (8 points). A biologist is studying a population of microorganisms in a circular petri dish of radius 5cm. Her model predicts that the population density of microorganisms should be $\frac{C}{e^r}$ individuals/cm² at distance *r* from the center of the dish, for some constant *C*. Set up (**but do not solve**) an integral giving the total population of microorganisms in the dish.

Initials:

Problem 3 (20 points). Use the method of Lagrange multipliers to find the maximum value taken by the function $f(x, y, z) = 3yz - x^2$ on the plane -2x + 6y + 6z = 11.

$$\begin{aligned} &\mathcal{V}f = \lambda \nabla g: \\ &-2x = f_z = \lambda g_x = \lambda(-2) \\ &3z = f_y = \lambda g_y = \lambda(6) \\ &3y = f_z = \lambda g_z = \lambda(6) \end{aligned} \qquad \begin{array}{l} & y = 2\lambda \\ &= 2\lambda \\ &=$$

Plug into constraint equation:

$$-2(\lambda)+6(2\lambda)+6(2\lambda)=11 \implies \lambda=\frac{1}{2}$$

So $x=\frac{1}{2}$, $y=1$, $z=1$.

Maximum:	f(1/2	,	1	,	1) =	"/4	
----------	----	-----	---	---	---	---	-----	-----	--

Initials:

Problem 5 (6 + 6 + 6 points). For each of the following regions *W*, set up (**but do not evaluate**) an iterated integral in spherical coordinates giving $\iiint_W z \, dV$. (The integrand is the function f(x, y, z) = z.)

(a) W is the region between the two spheres $x^2 + y^2 + z^2 = 3$ and $x^2 + y^2 + z^2 = 16$. $y = \sqrt{2}$ y = 42= p con Ø Jeo Jøzo Jpz-13 passe esing de dø do

(b) W is the set of points (x, y, z) lying between the two spheres $x^2 + y^2 + z^2 = 3$ and $x^2 + y^2 + z^2 = 16$ and satisfying $y \ge 0, z \le 0$.

Belan zy-plane: $\frac{\pi}{2} \le \phi \le \pi$ $\int_{\Theta=0}^{\pi} \int_{\Theta=\frac{\pi}{2}}^{\pi} \int_{\Theta=\frac{\pi}{2}}^{\Phi} e^{is} \phi e^{2sh} \phi de d\phi d\phi$

\$ = The

(c) W is the set of points (x, y, z) lying between the cone $z = \sqrt{x^2 + y^2}$ and the sphere $x^2 + y^2 + z^2 = 16$. ice cream cover

$$\int_{\Theta=0}^{2\pi} \int_{\phi=0}^{\pi/4} \int_{e=0}^{4} e^{\cos\phi} e^{2} e^{\cos\phi} de^{2\phi} d\theta.$$

Initials:

Problem 6 (6 + 6 points). Let *T* be the tetrahedral region bounded by the *xy*-plane, the *xz*-plane, the *yz*-plane, and the plane x + 3y + 5z = 15. Express the integral $\iiint_T f \, dV$ as an iterated integral using the two requested orders of integration.

Initials:

Problem $\overline{7}$ (7 + 7 points). The two parts are independent.

(a) Let *L* be the line that is the intersection of the planes z = 3 and x = y. Notice that the two points (5, 5, 3) and (0, 0, 3) each lie on *L*. Give a parametrization $\vec{r}(t)$ of *L* satisfying $\vec{r}(0) = (5, 5, 3)$ and $\vec{r}(2) = (0, 0, 3)$.

PQ = <-51-5107

(For partial credit, give any correct parametrization of *L*.)

"Standard parametrization: <5,5,37+ t<-5,-5,07.

Desired parametrization: $\vec{r}(4) = \langle 5, 5, 3 \rangle + \frac{t}{2} \langle -5, -5, 0 \rangle, -\infty < t < \infty$

(b) Give a vector-valued function that parametrizes the circle of radius 5 centered at (−3, 4) in a clockwise direction.

(For partial credit, give any correct parametrization of this circle.)

"Standard" parametrization:

$$(-3, 47 + 5 < cos(t), sin(t)), (CCL) = 0 \le t \le 2\pi$$
.
To reverse orientation, change t to -t:
 $(-3, 47 + 5 < cos(-t), sin(-t)), = 0 \le t \le 2\pi$.