MATH 208, EXAM 1

ZACH NORWOOD

Name: \qquad NUID: \qquad

Instructions.

- You should have 9 pages on which 7 problems are printed.
- You have 50 minutes: the exam will begin on the hour and end promptly, 50 minutes later.
- Show all work unless otherwise specified. What you write on the page must convince me that you understand the problem and its solution.
- Read each problem carefully.
- You do not need to simplify your answers, unless the instructions for a problem indicate otherwise.
- You are not allowed a calculator, notes, textbooks, or access to any electronic devices.
- Don't panic. Good luck!

Below is pictured a contour map of a function $f(x, y)$. (Notice that some labels for contours appear in the left half of the picture, and others appear in the right half.) Problem 1 refers to this graph.

Problem 1 (2 points each). Answer each question about the partial derivatives of f at the point Q.
(a) At the point Q, f_{x} is \ldots

(b) At the point Q, f_{y} is \ldots
$\begin{cases}\square & \text { POSITIVE } \\ \square & \text { NEGATIVE } \\ \square & \text { APPROXIMATELY } 0\end{cases}$
(c) At the point $Q, f_{x x}$ is \ldots

POSITIVE
NEGATIVE
APPROXIMATELY 0
(d) At the point $Q, f_{y y}$ is \ldots
(e) Which of the graphs below is the correct graph of the x-trace $f(x, 1.9)$? (The point P is $(5,1.9)$.)

\square	graph (i)
\square	graph (ii)
\square	graph (iii)
\square	graph (iv)
\square	graph (v)

(i)

(iii)

(iv)

(ii)
(v)

(f) A portion of the graph is reproduced below with four additional vectors $v 1$, $v 2, v 3$, and $v 4$ drawn on it. Which of the four vectors is $\nabla f(R)$?

$v 1$
$\square v$
$\square \quad v 3$
$\square v$

Problem $2(6+6+6$ points). Consider the vector $\vec{v}=\langle 2,-6,9\rangle$.
(a) Find a unit vector parallel to \vec{v}.
(b) Give an example of a vector $\vec{u} \neq \vec{v}$ that makes an obtuse angle with \vec{v}. Briefly explain your answer.
(c) Give an equation for a plane to which \vec{v} is a normal vector.

Problem 3 (10 points). Parametrize the line through the point $(3,4,5)$ that is normal to the plane $2 x-7 y+z=8$.

Problem 4 (8 points). A woman exerts a horizontal force of 5 pounds on a box as she pushes it all the way up a ramp that is 6 feet long and inclined at an angle of 30 degrees above the horizontal. Find, in foot-pounds, the work done on the box. Show your work.

Problem 5 (22 points). Consider the function

$$
f(x, y)=x^{3}-3 x y+y^{2}
$$

It has two critical points. Find them, and use the Second Derivative Test to attempt to classify each one. Show your work.

Problem 6 (12 points). You are given the following information about a function $W(s, t)=F(u(s, t), v(s, t))$.

$$
\begin{aligned}
u(1,0) & =1 & u_{s}(1,0) & =3 \\
v(1,0) & =3 & v_{s}(1,0) & =5 \\
F_{u}(1,3) & =4 & F_{v}(1,3) & =9
\end{aligned}
$$

(a) Write down a Chain Rule for computing $W_{s}(1,0)$. (Do not compute it yet.)
(b) Now compute $W_{s}(1,0)$. Show your work.

Problem 7 ($6+6+6$ points). An unevenly heated metal plate has temperature $T(x, y)$ in degrees Celsius at a point (x, y). Suppose that $T(2,1)=145, T_{x}(2,1)=6$, and $T_{y}(2,1)=-8$.
(a) Use the linearization to estimate the temperature at the point $(2.04,0.95)$.
(b) Find (exactly) the instantaneous rate of change of T at $(2,1)$ in the direction $\left\langle\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$.
(c) At $(2,1)$, in which direction is the temperature increasing most rapidly? Give your answer as a unit vector.

