MATH 208, EXAM 1

Name: ______ NUID: _____

Instructions.

- You should have 9 pages on which 7 problems are printed.
- You have 50 minutes: the exam will begin on the hour and end promptly, 50 minutes later.
- Show all work unless otherwise specified. What you write on the page must convince me that you understand the problem and its solution.
- Read each problem carefully.
- You do not need to simplify your answers, unless the instructions for a problem indicate otherwise.
- You are not allowed a calculator, notes, textbooks, or access to any electronic devices.
- Don't panic. Good luck!

Date: Fall 2022.

2

Below is pictured a contour map of a function f(x, y). (Notice that some labels for contours appear in the left half of the picture, and others appear in the right half.) Problem 1 refers to this graph.

Problem 1 (2 points each). Answer each question about the partial derivatives of f at the point Q.

(e) Which of the graphs below is the correct graph of the *x*-trace *f*(*x*, 1.9)? (The point *P* is (5, 1.9).)

(f) A portion of the graph is reproduced below with four additional vectors v_1 , v_2 , v_3 , and v_4 drawn on it. Which of the four vectors is $\nabla f(R)$?

4

MATH 208, EXAM 1

Problem 2 (6 + 6 + 6 points). Consider the vector $\vec{v} = \langle 2, -6, 9 \rangle$.

(a) Find a unit vector parallel to \vec{v} .

(b) Give an example of a vector $\vec{u} \neq \vec{v}$ that makes an obtuse angle with \vec{v} . *Briefly* explain your answer.

(c) Give an equation for a plane to which \vec{v} is a normal vector.

ZACH NORWOOD

Problem 3 (10 points). Parametrize the line through the point (3, 4, 5) that is normal to the plane 2x - 7y + z = 8.

Problem 4 (8 points). A woman exerts a horizontal force of 5 pounds on a box as she pushes it all the way up a ramp that is 6 feet long and inclined at an angle of 30 degrees above the horizontal. Find, in foot-pounds, the work done on the box. Show your work.

6

Problem 5 (22 points). Consider the function

$$f(x,y) = x^3 - 3xy + y^2.$$

It has two critical points. Find them, and use the Second Derivative Test to attempt to classify each one. Show your work.

Problem 6 (12 points). You are given the following information about a function W(s, t) = F(u(s, t), v(s, t)).

u(1,0) = 1	$u_s(1,0)=3$	$u_t(1,0)=6$
v(1,0)=3	$v_s(1,0)=5$	$v_t(1,0) = -5$
$F_u(1,3) = 4$	$F_{\nu}(1,3)=9$	

(a) Write down a Chain Rule for computing $W_s(1, 0)$. (Do not compute it yet.)

(b) Now compute $W_s(1, 0)$. Show your work.

Problem 7 (6 + 6 + 6 points). An unevenly heated metal plate has temperature T(x, y) in degrees Celsius at a point (x, y). Suppose that T(2, 1) = 145, $T_x(2, 1) = 6$, and $T_y(2, 1) = -8$.

(a) Use the linearization to estimate the temperature at the point (2.04, 0.95).

(b) Find (exactly) the instantaneous rate of change of *T* at (2, 1) in the direction $\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

(c) At (2, 1), in which direction is the temperature increasing most rapidly? Give your answer as a unit vector.