MATH 208, EXAM 1

ZACH NORWOOD

Name: Sohntions _____ NUID: _____

Instructions.

- You should have 9 pages on which 7 problems are printed.
- You have 50 minutes: the exam will begin on the hour and end promptly, 50 minutes later.
- Show all work unless otherwise specified. What you write on the page must convince me that you understand the problem and its solution.
- Read each problem carefully.
- You do not need to simplify your answers, unless the instructions for a problem indicate otherwise.
- You are not allowed a calculator, notes, textbooks, or access to any electronic devices.
- Don't panic. Good luck!

Date: Fall 2022.

Below is pictured a contour map of a function f(x, y). (Notice that some labels for contours appear in the left half of the picture, and others appear in the right half.) Problem 1 refers to this graph.

Problem 1 (2 points each). Answer each question about the partial derivatives of f at the point Q.

2

(e) Which of the graphs below is the correct graph of the *x*-trace *f*(*x*, 1.9)? (The point *P* is (5, 1.9).)

(f) A portion of the graph is reproduced below with four additional vectors v1, v2, v3, and v4 drawn on it. Which of the four vectors is $\nabla f(R)$?

4

Problem 2 (6 + 6 + 6 points). Consider the vector $\vec{v} = \langle 2, -6, 9 \rangle$.

(a) Find a unit vector parallel to \vec{v} .

$$\begin{aligned} |\vec{v}| &= \sqrt{2^2 + (-6)^2 + q^2} = 11 \\ \text{Two solutions} : \quad \frac{1}{1!} \vec{v} = \langle \frac{2}{1!}, -\frac{6}{1!}, \frac{9}{1!} \rangle \\ &= \langle \frac{1}{1!} \vec{v} \rangle. \end{aligned}$$

(b) Give an example of a vector $\vec{u} \neq \vec{v}$ that makes an obtuse angle with \vec{v} . *Briefly* explain your answer.

(c) Give an equation for a plane to which \vec{v} is a normal vector.

$$2x - 6y + 9z = 0.$$

Problem 3 (10 points). Parametrize the line through the point (3, 4, 5) that is normal to the plane 2x - 7y + z = 8.

Normal vector
$$\vec{v} = \langle 2, -7, 1 \rangle$$
.
 $\langle 3, 4, 5 \rangle + t\vec{v} = \langle 3+2t, 4-7t, 5+t \rangle$.
I.e. $z = 3+2t$
 $y = 4-7t$
 $z = 5+t$.

Problem 4 (8 points). A woman exerts a horizontal force of 5 pounds on a box as she pushes it all the way up a ramp that is 6 feet long and inclined at an angle of 30 degrees above the horizontal. Find, in foot-pounds, the work done on the box. Show your work. $\overrightarrow{F} = \langle 5, \circ \rangle$ $\overrightarrow{F} = \langle 5, \circ \rangle$ $6^{\frac{1}{2}e^{2t}}$

$$\int \frac{5 \text{ pounds}}{30^{\circ}}$$

$$\int \text{ork} = \vec{F} \cdot \vec{d} \quad \left(= |\vec{F}| |\vec{d}| \cos 30^{\circ} \right)$$

$$= \left(5_{1}^{\circ} \circ 7 \cdot 6 \right) \left(\cos 30^{\circ} , \sin 30^{\circ} \right)$$

$$= 5 \cdot 6 \cos 30^{\circ} = 30^{\circ} \cdot \frac{13}{1} = 15 \cdot 13 \text{ foot-pounds}$$

6

Problem 5 (22 points). Consider the function

$$f(x,y)=x^3-3xy+y^2.$$

It has two critical points. Find them, and use the Second Derivative Test to attempt to classify each one. Show your work.

7

C

u(1,0)=1	$u_s(1,0)=3$	$u_t(1,0)=6$
v(1,0)=3	$v_s(1,0)=5$	$v_t(1,0) = -5$
$F_u(1,3)=4$	$F_{\nu}(1,3)=9$	

(a) Write down a Chain Rule for computing $W_s(1, 0)$. (Do not compute it yet.)

$$\frac{\partial W}{\partial s}(1,s) = \frac{\partial F}{\partial u} \left(u(1,s), v(1,s) \right) \frac{\partial u}{\partial s} (1,s)$$

+
$$\frac{\partial F}{\partial v} \left(u(1,s), v(1,s) \right) \frac{\partial v}{\partial s} (1,s)$$

(b) Now compute $W_s(1, 0)$. Show your work.

$$\begin{aligned} \frac{\partial F}{\partial u} \left(u(1,0), v(1,0) \right) &= \frac{\partial F}{\partial u} \left(1,3 \right) = 4 \\ \frac{\partial F}{\partial v} \left(u(1,0), v(1,0) \right) &= \frac{\partial F}{\partial v} \left(1,3 \right) = 9 \\ \frac{\partial V}{\partial v} \left(1,0 \right) &= 3 \\ \frac{\partial V}{\partial v} \left(1,0 \right) = 5 \\ \frac{\partial V}{\partial v} \left(1,0 \right) &= 5 \end{aligned}$$

$$Answer = 4 \cdot 3 + 9 \cdot 5 = 57$$

See Problem 10.4.9 In the text book !

MATH 208, EXAM 1

Problem 7 (6 + 6 + 6 points). An unevenly heated metal plate has temperature T(x, y) in degrees Celsius at a point (x, y). Suppose that T(2, 1) = 145, $T_x(2, 1) = 6$, and $T_y(2, 1) = -8$.

(a) Use the linearization to estimate the temperature at the point (2.04, 0.95).

$$L(x,y) = 145 + T_{x}(2,i)(x-2) + T_{y}(2,i)(y-1)$$

= 145 + 6(x-2) - 8(y-1)
$$L(2,04, 0.95) = 145 + 6(0.04) - 8(-0.05) = 145.64^{\circ}$$

9

(b) Find (exactly) the instantaneous rate of change of T at (2, 1) in the direction $\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. (unit vector)

$$T_{\zeta-\frac{1}{r_{2}},\frac{1}{r_{2}}}\left(2,1\right) = \sqrt{T}\left(2,1\right) \cdot \left\langle-\frac{1}{r_{2}},\frac{1}{r_{2}}\right\rangle$$
$$= \left\langle b,-8\right\rangle \cdot \left\langle-\frac{1}{r_{2}},\frac{1}{r_{2}}\right\rangle$$
$$= -\frac{14}{r_{2}} \circ C/\operatorname{unit}.$$

(c) At (2, 1), in which direction is the temperature increasing most rapidly? Give your answer as a unit vector.

$$\frac{\nabla T}{|\nabla T|} = \frac{\langle 6, -8 \rangle}{|\langle 6, -8 \rangle|} = \langle \frac{3}{5}, \frac{-4}{5} \rangle$$