MATH 208, EXAM 1

ZACH NORWOOD

vame. Solutions
NUID: \qquad

Instructions.

- You should have 9 pages on which 7 problems are printed.
- You have 50 minutes: the exam will begin on the hour and end promptly, 50 minutes later.
- Show all work unless otherwise specified. What you write on the page must convince me that you understand the problem and its solution.
- Read each problem carefully.
- You do not need to simplify your answers, unless the instructions for a problem indicate otherwise.
- You are not allowed a calculator, notes, textbooks, or access to any electronic devices.
- Don’t panic. Good luck!

Below is pictured a contour map of a function $f(x, y)$. (Notice that some labels for contours appear in the left half of the picture, and others appear in the right half.) Problem 1 refers to this graph.

Problem 1 (2 points each). Answer each question about the partial derivatives of f at the point Q.
(a) At the point Q, f_{x} is \ldots

(b) At the point Q, f_{y} is \ldots

POSITIVE
NEGATIVE
APPROXIMATELY 0
(c) At the point $Q, f_{x x}$ is \ldots

positive
(c) At

NEGATIVE
APPROXIMATELY 0
(d) At the point $Q, f_{y y}$ is \ldots

positive
negative
APPROXIMATELY 0

(e) Which of the graphs below is the correct graph of the x-trace $f(x, 1.9)$? (The point P is $(5,1.9)$.)

(f) A portion of the graph is reproduced below with four additional vectors $v 1$, $v 2, v 3$, and $v 4$ drawn on it. Which of the four vectors is $\nabla f(R)$?

\square	$v 1$
\square	$v 2$
$\square 3$	

Problem $2(6+6+6$ points). Consider the vector $\vec{v}=\langle 2,-6,9\rangle$.
(a) Find a unit vector parallel to \vec{v}.

$$
\begin{gathered}
|\vec{v}|=\sqrt{2^{2}+(-6)^{2}+9^{2}}=11 \\
T_{\text {wo solutions: }} \frac{1}{11} \vec{V}=\left\langle\frac{2}{11}, \frac{-6}{11}, \frac{9}{11}\right\rangle \\
\& \quad-\frac{1}{11} \vec{v}
\end{gathered}
$$

(b) Give an example of a vector $\vec{u} \neq \vec{v}$ that makes an obtuse angle with \vec{v}. Briefly explain your answer.

$$
\begin{aligned}
\text { E.g. } & \langle 0,1,0\rangle \text { bc. } \\
& \langle 0,1,0\rangle \cdot\langle 2,-6,9\rangle=-6<0 .
\end{aligned}
$$

(c) Give an equation for a plane to which \vec{v} is a normal vector.

$$
2 x-6 y+9 z=0 .
$$

Problem 3 (10 points). Parametrize the line through the point $(3,4,5)$ that is normal to the plane $2 x-7 y+z=8$.

$$
\text { Normal vector } \begin{aligned}
& \vec{v}=\langle 2,-7,1\rangle \\
&\langle 3,4,5\rangle+t \vec{v}=\langle 3+2 t, 4-7 t, 5+t\rangle . \\
& \text { Ie. } \quad \begin{aligned}
x & =3+2 t \\
y & =4-7 t \\
z & =5+t .
\end{aligned}
\end{aligned}
$$

See Problem 9.3 .8 in the textbook!

Problem 4 (8 points). A woman exerts a horizontal force of 5 pounds on a box as she pushes it all the way up a ramp that is 6 feet long and inclined at an angle of 30 degrees above the horizontal. Find, in foot-pounds, the work done on the box Show your work.

$$
=5.6 \cos 30^{\circ}=30 \frac{\sqrt{3}}{2}=15 \sqrt{3} \text { had }-\mathrm{pmald}
$$

Problem 5 (22 points). Consider the function

$$
f(x, y)=x^{3}-3 x y+y^{2}
$$

It has two critical points. Find them, and use the Second Derivative Test to attempt to classify each one. Show your work.

$$
\begin{aligned}
& f_{x}=3 x^{2}-3 y \\
& f_{y}=-3 x+2 y
\end{aligned}
$$

critical point \#1:

$$
(0,0) \begin{cases}\square & \text { local min } \\ \square & \text { local max } \\ \square & \text { saddle point } \\ \square & \text { inconclusive }\end{cases}
$$

critical point \#2:

$$
\left(\frac{3}{2}, \frac{9}{4}\right) \begin{cases}3 \not Q & \text { local min } \\ \square & \text { local max } \\ \square & \text { saddle point } \\ \square & \text { inconclusive }\end{cases}
$$

See Problem 10.5.

ZACH NORWOOD
Problem 6 (12 points). You are given the following information about a function $W(s, t)=F(u(s, t), v(s, t))$.
$u(1,0)=1$
$u_{s}(1,0)=3$
$u_{t}(1,0)=6$
$v(1,0)=3$
$v_{s}(1,0)=5$
$v_{t}(1,0)=-5$
$F_{u}(1,3)=4$
$F_{v}(1,3)=9$
(a) Write down a Chain Rule for computing $W_{s}(1,0)$. (Do not compute it yet.)

$$
\begin{aligned}
\frac{\partial w}{\partial s}(1,0) & =\frac{\partial F}{\partial u}(u(1,0), v(1,0)) \frac{\partial u}{\partial s}(1,0) \\
& +\frac{\partial F}{\partial v}(u(1,0), v(1,0)) \frac{\partial v}{\partial s}(1,0)
\end{aligned}
$$

(b) Now compute $W_{s}(1,0)$. Show your work.

$$
\begin{aligned}
& \frac{\partial F}{\partial u}\left({ }_{n}(1,0), v(1,0)\right)=\frac{\partial=}{\partial \partial_{n}}(1,3)=4 \\
& \frac{\partial F}{\partial v}\left({ }_{v}(1,0), v(1,0)\right)=\frac{\partial F}{\partial v}(1,3)=9 \\
& \operatorname{Us}(1,0) \geq 3 ; v_{s}(1,0)=5 .
\end{aligned}
$$

$$
\text { Answer }=4.3+9.5=57
$$

Problem 7 ($6+6+6$ points). An unevenly heated metal plate has temperature $T(x, y)$ in degrees Celsius at a point (x, y). Suppose that $T(2,1)=145, T_{x}(2,1)=6$, and $T_{y}(2,1)=-8$.
(a) Use the linearization to estimate the temperature at the point $(2.04,0.95)$.

$$
\begin{aligned}
& L(x, y)=145+T_{x}(2,1)(x-2)+T_{y}(2,1)(y-1) \\
&=145+6(x-2)-8(y-1) \\
& L(2.04,0.95)=145+6(0.04)-8(-0.05)=145.64^{\circ}
\end{aligned}
$$

(b) Find (exactly) the instantaneous rate of change of T at $(2,1)$ in the direction $\left\langle\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$. (unit vector)

$$
\begin{aligned}
T\left\langle-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle(2,1) & =\sqrt{T}(2,1) \cdot\left\langle-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle \\
& =\langle 6,-8\rangle \cdot\left\langle\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle \\
& =-\frac{14}{\sqrt{2}} \quad \circ C / \text { unit }
\end{aligned}
$$

(c) At $(2,1)$, in which direction is the temperature increasing most rapidly? Give your answer as a unit vector.

$$
=\left\langle\frac{3}{5}, \frac{-4}{5}\right\rangle
$$

