12.1 Vector Fields

In this section, we will introduce the concept of a vector field, explore how to visualize vector fields, and examine gradient-like vector fields.

Vector Fields

A vector field is a function $\mathbf{F}(\mathbf{x})$ that takes vectors as inputs and returns a vector of the same dimension as an output.

For example, the function $\mathbf{F}(x, y)=-y \hat{\mathbf{x}}+x \hat{\mathbf{y}}$ is a 2 -dimensional vector field.
To visualize a vector field, one draws vectors whose tails are placed at sample points \mathbf{x} and are pointed in the direction of $\mathbf{F}(\mathbf{x})$.

The vector field $\mathbf{F}(x, y)=-y \hat{\mathbf{x}}+x \hat{\mathbf{y}}$
A common type of vector fields are gradient vector fields, which we've already envountered! A gradient vector field is the vector field obtained as $\mathbf{F}(\mathbf{x})=\boldsymbol{\nabla} f(\mathbf{x})$ where $f(\mathbf{x})$ is a real-valued function. In this case, the function $f(\mathbf{x})$ is called the potiential function of the vector field $\mathbf{F}(\mathbf{x})$.

Question 1. Sketch the vector field $\mathbf{F}(x, y)=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}$ on the domain $[-2,2] \times[-2,2]$.

Question 2. Consider the function $f(x, y)=\sqrt{x^{2}+y^{2}}$ on the domain $0 \leq x^{2}+y^{2} \leq 1$. Sketch the gradient vector field $\mathbf{F}(x, y)=\boldsymbol{\nabla} f(x, y)$ on this domain.

Question 3. Consider the vector field $\mathbf{V}(x, y)=\langle y,-x\rangle$.
(a) Sketch the vector field $\mathbf{V}(x, y)$ on the domain $[-3,3] \times[-3,3]$.
(b) Is the vector field $\mathbf{V}(x, y)$ a gradient vector field? If so, find a scalar function $\varphi(x, y)$ such that $\boldsymbol{\nabla} \varphi=\mathbf{V}$. If not, explain why.

Question 4. For each of the following, first, draw a vector field with the given property. Then, write a formula for the vector field you drew
(a) All vectors point towards the point $(1,-1)$.
(b) All vectors are parallel to the x-axis (horizontal) and all vectors on a vertical line have the same magnitude.
(c) All vectors are of length 3 and point towards the origin.

