|  | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.083 | 0.887 | 1.634 | 1.943 | 1.634 | 0.887 | 0.083 |
| 2 | 0.887 | 2.289 | 3.59 | 4.129 | 3.59 | 2.289 | 0.887 |
| 1 | 1.634 | 3.59 | 5.406 | 6.159 | 5.406 | 3.59 | 1.634 |
| 0 | 1.943 | 4.129 | 6.159 | 7 | 6.159 | 4.129 | 1.943 |
| 1 | 1.634 | 3.59 | 5.406 | 6.159 | 5.406 | 3.59 | 1.634 |
| 2 | 0.887 | 2.289 | 3.59 | 4.129 | 3.59 | 2.289 | 0.887 |
| 3 | 0.083 | 0.887 | 1.634 | 1.943 | 1.634 | 0.887 | 0.083 |

$$
f(x, y)=8 e^{\frac{-x^{2}-y^{2}}{9}}
$$

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -3 | -2.5 | -2 | -1.5 | -1 | -0.5 | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 |
| 3 | 0.083 | 0.47 | 0.887 | 1.292 | 1.634 | 1.862 | 1.943 | 1.862 | 1.634 | 1.292 | 0.887 | 0.47 | 0.083 |
| 2.5 | 0.47 | 0.995 | 1.561 | 2.111 | 2.575 | 2.885 | 2.995 | 2.885 | 2.575 | 2.111 | 1.561 | 0.995 | 0.47 |
| 2 | 0.887 | 1.561 | 2.289 | 2.995 | 3.59 | 3.989 | 4.129 | 3.989 | 3.59 | 2.995 | 2.289 | 1.561 | 0.887 |
| 1.5 | 1.292 | 2.111 | 2.995 | 3.852 | 4.575 | 5.06 | 5.23 | 5.06 | 4.575 | 3.852 | 2.995 | 2.111 | 1.292 |
| 1 | 1.634 | 2.575 | 3.59 | 4.575 | 5.406 | 5.963 | 6.159 | 5.963 | 5.406 | 4.575 | 3.59 | 2.575 | 1.634 |
| 0.5 | 1.862 | 2.885 | 3.989 | 5.06 | 5.963 | 6.568 | 6.781 | 6.568 | 5.963 | 5.06 | 3.989 | 2.885 | 1.862 |
| 0 | 1.943 | 2.995 | 4.129 | 5.23 | 6.159 | 6.781 | 7 | 6.781 | 6.159 | 5.23 | 4.129 | 2.995 | 1.943 |
| -0.5 | 1.862 | 2.885 | 3.989 | 5.06 | 5.963 | 6.568 | 6.781 | 6.568 | 5.963 | 5.06 | 3.989 | 2.885 | 1.862 |
| -1 | 1.634 | 2.575 | 3.59 | 4.575 | 5.406 | 5.963 | 6.159 | 5.963 | 5.406 | 4.575 | 3.59 | 2.575 | 1.634 |
| -1.5 | 1.292 | 2.111 | 2.995 | 3.852 | 4.575 | 5.06 | 5.23 | 5.06 | 4.575 | 3.852 | 2.995 | 2.111 | 1.292 |
| -2 | 0.887 | 1.561 | 2.289 | 2.995 | 3.59 | 3.989 | 4.129 | 3.989 | 3.59 | 2.995 | 2.289 | 1.561 | 0.887 |
| -2.5 | 0.47 | 0.995 | 1.561 | 2.111 | 2.575 | 2.885 | 2.995 | 2.885 | 2.575 | 2.111 | 1.561 | 0.995 | 0.47 |
| -3 | 0.083 | 0.47 | 0.887 | 1.292 | 1.634 | 1.862 | 1.943 | 1.862 | 1.634 | 1.292 | 0.887 | 0.47 | 0.083 |

$$
\left.\left.\frac{0.887}{0.4,47} \right\rvert\, 0.003\right]=8 e^{\frac{-x^{2}-y^{2}}{9}}
$$

Written Answers to Discussion Questions:

- Suppose we wanted to increase the resolution of our image by a factor of two in both the $\boldsymbol{x}$ and the $\boldsymbol{y}$ directions. How many pixels would your new image use?
- This would use $13 \times 13=169$ pixels (double-1, as we add half-boxes between each previous box). This gives us $169-49=120$ new pixels to calculate.
- Compare this with how many new calculations you'd have to do to draw the $\boldsymbol{y}=0$ trace?
- To draw the $y=0$ trace with double the resolution, we'd only need to do 13 calculations in total, much more feasible than 169 calculations!
- Compare and contrast graphing functions of one variable and two variables. What takes more work? What produces cooler graphs? Why does one take more work than the other?
- One variable is easier than two because you only need to sample $n$ points to form a "complete image", where with two variables, you need to sample $n^{2}$ points to get an equivalent resolution. Two-dimensional images are cooler because they can contain much more information and have much more interesting shapes.
- Now, imagine you need to build an "image" with a resolution of 1920x1080px. (aka "Full HD" or "1080p") How many pixels are contained in this image? Do you think it's feasible to do this "by hand", using our method?
- This will contain $1920 \times 1080=2.0736 \times 10^{6}$ pixels. I would not want to do this by hand, or even have Excel do the computations, as even entering the axes labels or copying the formulas would be very tedious.
- Compare your plot with those that Wolfram Alpha generates. Does your plot somewhat resemble their plots?
- Yes. Our plot(s) compare favorably to those Wolfram Alpha generated. Ours don't have as much resolution, but they tell us information about the shape of our function.

