	-3	-2	-1	0	1	2	3
3	0.083	0.887	1.634	1.943	1.634	0.887	0.083
2	0.887	2.289	3.59	4.129	3.59	2.289	0.887
1	1.634	3.59	5.406	6.159	5.406	3.59	1.634
0	1.943	4.129	6.159	7	6.159	4.129	1.943
1	1.634	3.59	5.406	6.159	5.406	3.59	1.634
2	0.887	2.289	3.59	4.129	3.59	2.289	0.887
3	0.083	0.887	1.634	1.943	1.634	0.887	0.083

$$f(x,y) = 8e^{\frac{-x^2 - y^2}{9}}$$

	-3	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	3
3	0.083	0.47	0.887	1.292	1.634	1.862	1.943	1.862	1.634	1.292	0.887	0.47	0.083
25	0 47	0 995	1 561	2 111	2 5 7 5	2 885	2 995	2 885	2 5 7 5	2 111	1 561	0 995	0 47
2.0	0.997	1 561	2 2 2 9 0	2 005	2 50	2 0 9 0	4 120	2 090	2 50	2 005	2 2 2 9 0	1 561	0.997
1 5	1.202	2.111	2.209	2.353	4.575	5.369	F 22	5.369	4.575	2.355	2.209	2.111	1.202
1.5	1.292	2.111	2.995	3.852	4.575	5.00	5.23	5.00	4.575	5.652	2.995	2.111	1.292
1	1.634	2.575	3.59	4.575	5.406	5.963	6.159	5.963	5.406	4.575	3.59	2.575	1.634
0.5	1.862	2.885	3.989	5.06	5.963	6.568	6.781	6.568	5.963	5.06	3.989	2.885	1.862
0	1.943	2.995	4.129	5.23	6.159	6.781	7	6.781	6.159	5.23	4.129	2.995	1.943
-0.5	1.862	2.885	3.989	5.06	5.963	6.568	6.781	6.568	5.963	5.06	3.989	2.885	1.862
-1	1.634	2.575	3.59	4.575	5.406	5.963	6.159	5.963	5.406	4.575	3.59	2.575	1.634
-1.5	1.292	2.111	2.995	3.852	4.575	5.06	5.23	5.06	4.575	3.852	2.995	2.111	1.292
-2	0.887	1.561	2.289	2.995	3.59	3.989	4.129	3.989	3.59	2.995	2.289	1.561	0.887
-2.5	0.47	0.995	1.561	2.111	2.575	2.885	2.995	2.885	2.575	2.111	1.561	0.995	0.47
-3	0.083	0.47	0.887	1.292	1.634	1.862	1.943	1.862	1.634	1.292	0.887	0.47	0.083
f(x,y) =													

Written Answers to Discussion Questions:

- Suppose we wanted to increase the resolution of our image by a factor of two in both the x and the y directions. How many pixels would your new image use?
 - This would use $13 \times 13 = 169$ pixels (double-1, as we add half-boxes between each previous box). This gives us 169 49 = 120 new pixels to calculate.
- Compare this with how many new calculations you'd have to do to draw the *y* = 0 trace?
 - To draw the y = 0 trace with double the resolution, we'd only need to do 13 calculations in total, much more feasible than 169 calculations!
- Compare and contrast graphing functions of one variable and two variables. What takes more work? What produces cooler graphs? Why does one take more work than the other?
 - One variable is easier than two because you only need to sample n points to form a "complete image", where with two variables, you need to sample n^2 points to get an equivalent resolution. Two-dimensional images are cooler because they can contain much more information and have much more interesting shapes.
- Now, imagine you need to build an "image" with a resolution of 1920x1080px. (aka "Full HD" or "1080p") How many pixels are contained in this image? Do you think it's feasible to do this "by hand", using our method?
 - This will contain $1920 \times 1080 = 2.0736 \times 10^6$ pixels. I would not want to do this by hand, or even have Excel do the computations, as even entering the axes labels or copying the formulas would be very tedious.
- Compare your plot with those that Wolfram Alpha generates. Does your plot somewhat resemble their plots?
 - Yes. Our plot(s) compare favorably to those Wolfram Alpha generated. Ours don't have as much resolution, but they tell us information about the shape of our function.